Messmethoden der Festkörperanalyse

1. Röntgenstrukturanalyse:

Kristallstruktur von Festkörpern, Struktur von Molekülen

2. Low Energy Electron Diffraction (LEED):

Struktur der Oberfläche

3. Infra Rot Spektroskopie (IR):

Schwingungsspektroskopie (Chemische Analyse) von Molekülen in der Gasphase, in Flüssigkeiten, in Festkörpern und auf Oberflächen.

4. Auger Elektronen Spektroskopie (AES):

Qualitative und quantitative Analyse der Oberfläche

5. X-ray Photoelectron Spectroscopy (XPS):

Qualitative, quantitative und chemische Analyse der Oberfläche

6. Scanning Tunneling Microscopy (STM):

Atomare Struktur von Oberfflächen

7. X-ray Flourescence Spectroscopy (XRF):

Qualitative und quantitative Analyse von Festkörpern

Röntgenstrukturanalyse (Laue)

Abb. 321. Beugung von Röntgenstrahlen an einer Punktreihe

Für ein lineares Punktgitter mit den Punkten P_0 , P_1 , ... und der Translation a_0 gilt folgendes:

Die Strahlen werden an den Gitterpunkten gebeugt. Die frage ist die nach dem Gangunterschied von zwei benachbarten gebeugten Wellen. φ sei der Einfallswinkel der Strahlen und sei der Ausfallswinkel. Außerdem gibt es zwei rechtwinklige Dreiecke P₀ P₀' P₁ und P₀ P₁ P₁'. Aus diesen Dreiecken folgt für den Gangunterschied folgende Gleichung:

 $P_0 P_1' - \overline{P_0} P_1 = a_0 \cdot \cos \overline{\varphi} - \overline{a_0} \cos \varphi = a_0 \left(\cos \overline{\varphi} - \cos \varphi \right)$

Verstärkung der gebeugten Strahlen erhält man wenn der Gangunterschied ein ganzzahliges vielfaches der Wellenlänge ist.

Röntgenstrukturanalyse (Bragg)

Abb. 322. Beugung (,,Reflexion'') eines Röntgenstrahlbündels an einer Netzebenen-

schar

 E_1 , E_2 , E_3 sind aufeinander folgende Netzebenen. Sie haben den gleichen Abstand d von einander. Unter dem so genannten Glanzwinkel ϑ fällt das Röntgenlicht ein. Gesucht ist der Gangunterschied (die Interferenz) zwischen den beiden Strahlen die in A_1 und B reflektiert werden. Die Strecke A_1N ist normal auf BA_3 . Die Wegdifferenz der beiden Strahlen ist also $BA_1 - BN$. Da gilt, dass $BA_1 = BA_3$ ist kann man die Wegdifferenz anschreiben als $BA_3 - BN = NA_3$. Daraus folgt:

 $NA_3 = A_1A_3 \cdot \cos(90^\circ - \vartheta) = A_1A_3 \cdot \sin \vartheta = 2d \cdot \sin \vartheta$

Für ein Interferenzmaximum gilt damit nach Bragg die folgende Bedingung:

$$n \cdot \lambda = 2d \cdot \sin \vartheta$$

Dabei ist n wieder eine ganze Zahl. Der Abstand d von zwei Netzebenen ist natürlich durch die Dimensionen der Elementarzelle des Gitters (a_0 , b_0 , c_0 , α , β , γ) gegeben.

Ewald Konstruktion

Mit Hilfe der Ewald Konstruktion lässt sich das reziproke Gitter einfach konstruieren:

Der Sinus des Glanzwinkels nach Bragg ist dem reziproken d Wert proportional. $\sin \vartheta_{hkl} = \frac{\lambda}{2d_{hkl}}$

O ist der Ursprung des reziproken Gitters. MO ist die Richtung des Primärstrahles. Nun kann man eine Kugel mit dem Radius $1/\lambda$ so einzeichnen, dass O auf der Kugeloberfläche liegt und MO der Radius dar Kugel ist. P ist ein weiterer Punkt des reziproken Gitters, der auf der Kugeloberfläche liegt. Die Strecke OP ist dann aber gleich 1/d_{hkl}. Die Strecke MN ist die Senkrechte auf die Strecke OP und damit ist ON gleich 1/2d_{hkl}. Im Dreieck MON gilt dann:

 $\sin \angle OMN = \frac{ON}{OM} = \frac{\lambda}{2d_{hkl}}$ Das heißt aber wiederum, dass der Winkel OMN gleich dem Glanzwinkel 3 ist und MP die Richtung des reflektierten Strahles darstellt, da einfallender und reflektierter Strahl ja den Winkel 29 einschließen. Mit Hilfe der Ewaldschen Kugel ist es nun möglich im Gitter sämtliche Reflexionen reziproken bei gegebenen Versuchsbedingungen zu konstruieren.

Laue Methode

Hier wird ein feststehender Einkristall mit weißem Röntgenlicht durchstrahlt. Die Methode wird hauptsächlich zur Symmetriebestimmung (Orientierungsbestimmung von Einkristallen) verwendet.

Drehkristall Verfahren

Abb. 327. Anordnung beim Drehkristallverfahren

Da man die Wellenlänge für die einzelnen Reflexionen hkl beim Laue Verfahren nicht kennt ist die Bestimmung von d nach der Braggschen Gleichung nicht möglich. Daher verwendet man monochromatisches Röntgenlicht mit bekannter Wellenlänge. Da dann aber nur ein Reflex entstehen würde, muss man den Kristall drehen, damit man alle Reflexe sehen kann.

Debye Scherrer Verfahren

Auch hier wird monochromatisches Licht verwendet. Da in einem feinen Pulver die einzelnen Kristalle beliebig orientiert sind, hat man ausreichende Variation im Glanzwinkel 9. Trotzdem wird die Probe meist noch zusätzlich gedreht.

Abb. 333. Schematische Darstellung des Pulververfahrens (Debye-Scherrer-Verfahren)

LEED: freie Weglänge der Elektronen

Da die freie Weglänge von Elektronen im Festkörper bei ca. 100 eV ein Minimum hat findet die Beugung der Elektronen an der Oberfläche statt. Die freie Weglänge als Funktion der Energie ist in folgender Figur für verschiedene Metalle dargestellt.

LEED: Ewald Kugel

Beim LEED wird ebenso wie in der Röntgenstrukturanalyse bei der Beugung ein Bild des reziproken Gitters erzeugt. Auch hier kann man die Gitterpunkte wieder mit Hilfe der Ewaldkonstruktion bestimmen. Aber auf Grund des zusätzlichen Freiheitsgrades, da man nur mehr 2 Dimensionen hat, gibt es statt der Punkte parallele Linien die von den Gitterpunkten normal zur Oberfläche weg gehen, die von der Ewald Kugel geschnitten werden (siehe Bild). Auch hier gilt die Bragg Gleichung und damit ist die einfache geometrische Interpretation der LEED Bilder analog zum 3D Fall (siehe Bild). Da man in der Regel die Elektronen normal auf die Oberfläche einfallen lässt vereinfacht sich die Gleichung für positive Interferenz zu

$$\sin \varphi = \frac{n\lambda}{d_{hk}} \approx \frac{n}{d_{hk}} \cdot \sqrt{\frac{150}{U}}$$

Die rechte Seite der Gleichung gilt für eine Spannung in [eV] und d_{hk} in [Å]. Eine Erhöhung der Energie der Elektronen entspricht einer Vergrößerung der Ewaldkugel und somit einer Zunahme der Zahl der Reflexe. Der (0/0) Reflex bleibt dabei immer am selben Ort und die anderen Reflexe laufen auf den Ursprung zu.

Fig. 9.13. The Ewald construction for a one-dimensional lattice.

LEED: Strukturbestimmung

Wiedergabe des reziproken und des realen Gitters einer LEED Struktur. Man sieht, dass die Gittervektoren des realen und reziproken Gitters normal aufeinander stehen und dass lange Abstände im reziproken Gitter kurzen Abständen im realen Gitter entsprechen.

Fig. 9.14. Analysis of a simple diffraction pattern.

a) Reciprocal lattice (=LEED pattern), o: Substrate ('normal') spots, \times : Overlayer ('extra') spots, b) Real lattice of the substrate (o) and the substrate (\times). The dashed line denotes the non-primitive c4 \times 2-unit cell.

LEED Bilder

LEED Bilder zweier Sauerstoff Überstrukturen und deren Mischung auf einer Kupfer Oberfläche.

Fig. 9.15. Diffraction patterns for oxygen adsorbed on Cu(110). a) 2×1 -structure at low coverage, b) $c6 \times 2$ -structure at high coverage, c) Superposition of diffraction patterns from both structures at intermediate coverages indicating the coexistence of domains of the 2×1 - and $c6 \times 2$ -structures. After [56].

LEED: (c2x2) Struktur

Eine bestimmte LEED Struktur kann immer von verschiedenen Anordnungen der Adsorbat Teilchen auf der Oberfläche stammen. Um diese zu unterscheiden braucht man die Dynamische Theorie, die Mehrfachbeugung berücksichtigt.

Fig. 9.5. Three different possible arrangements of adsorbed particles forming a $c2 \times 2$ -structure.

LEED: Mehrfachbeugung

Bei der dynamischen Theorie wird die Tatsache berücksichtigt, dass auf Grund der freien Weglänge der Elektronen nicht nur die erste Atomlage, sondern mehrere Atomlagen zur Beugung beitragen können, was zum Phänomen der Mehrfachbeugung führt (siehe Bild). Ausgehend von der kinematischen Theorie, die aus der Röntgenbeugung stammt und Dinge wie Strukturfaktor, Lorentzfaktor, etc. berücksichtigt, wird bei der Dynamischen Theorie auch noch die Mehrfachbeugung dazu genommen. Ähnlich wie bei der Röntgenstrukturanalyse stecken diese Informationen in der Intensität der Beugungsreflexe. Man muss daher die Änderung der Intensität der Beugungsreflexe als Funktion der Energie des Primärstrahles messen (I-V Kurve). Dann wird ausgehend von einem Strukturmodell die I-V Kurve berechnet und mit der gemessenen verglichen, bis man eine Übereinstimmung findet.

Fig. 9.34. Diagram illustrating the formation of the specular beam a) by single diffraction, b) by multiple diffraction.

LEED: Aufbau

Die Elektronen kommen mit einer bestimmten Energie aus der Elektronenkanone und treffen auf die Probe. Von dort werden die Elektronen reflektiert und fliegen in Richtung des Bildschirms. Dabei durchfliegen sie einen Feldfreien Raum, da die Probe und das 1. Gitter auf dem gleichen Potenital (Erde) liegen. Das 2. Gitter liegt auf einem negativen Potential, dass ein wenig kleiner als die Energie der Elektronen-

kanone ist. Dadurch werden alle inelastisch gestreuten Elektronen herausgefiltert. Dann werden die Elektronen, die das 2. Gitter passiert haben durch eine positive Spannung (ca. 5 kV) auf den Bildschirm hin beschleunigt. Das 3. Gitter dient Vermeidung zur von Feldinhomogenitäten. Anstatt des Bildschirmes kann man die Beugungsreflexe auch mit einer Faraday beweglichen Cup detektieren. Die ist besonders gut für die Aufnahme von I-V Kurven geeignet.

IR: Interferometer

FTIR Spektrometer verwenden Interferometer ein zur Aufnahme der Schwingungsspektren. Der Aufbau eines Interferometers besteht aus einer Lichtquelle (1), einem halbdurchlässigen Spiegel (Strahlteiler) (2, 3), einem fixen (4) und einem beweglichen (5) Spiegel. Die beiden Lichtteile werden dann wieder vereint, besitzen aber im Ausgang aus dem Interferometer (6) einen Laufzeitunterschied, der zu Interferenzen führt.

IR: Interferenz

Die Wechselwirkung zweier Lichtstrahlen kann man auch folgendermaßen beschreiben. Eine elektromagnetische Welle hat eine bestimmte Feldstärke E die man aus folgender Gleichung berechnen kann $E = Ae^{i(k \cdot r - \omega t)}$

Dabei ist A die Amplitude, k der Wellenvektor, r der Positionsvektor, ω die Kreisfrequenz und t die Zeit. Der Absolutbetrag des Wellenvektors berechnet

Figure 6.1: Interference of the two waves $E_1 = A_1 e^{i(k_x x - \omega t)}$ and $E_2 = A_2 e^{i(k_x x - \omega t + \delta)}$. A is the resultant amplitude.

sich aus der Formel $k = |\mathbf{k}| = \frac{2\pi}{\lambda} = 2\pi v$

Dabei bezeichnet man k und v als Wellenzahl. Nachdem die Winkelgeschwindigkeit meist zu hoch ist, kann man die Feldstärke E in der Regel nicht messen. Was man misst ist die Intensität I, die dem Quadrat der Amplitude proportional ist. Für 2 elektromagnetische Wellen, die sich in der Richtung x ausbreiten kann man folgendes sagen

$$E_1 = A_1 e^{i(k_x x - \omega t)} \qquad E_2 = A_2 e^{i(k_x x - \omega t + \delta)}$$

Die Wellen und ihre Amplituden gemeinsam mit der resultierenden Amplitude sind in der Figur dargestellt. Die Phasendifferenz der beiden Wellen ist δ . Das Quadrat der Amplitude lässt sich, wie man aus der Zeichnung erkennen kann also berechnen zu

$$A^2 = A_1^2 + A_2^2 + 2A_1A_2\cos\delta$$

Damit kann man analog für die Intensitäten anschreiben $I = I_1 + I_2 + 2\sqrt{I_1I_2} \cos \delta$

IR: Interferenzmuster

Figure 6.3: The interference pattern formed by a Michelson interferometer. The beamsplitting surface B forms the image M'_2 of the moving mirror M_2 , and the image S'_0 of the light source S_0 . S' is the image of S'_0 , formed by the fixed mirror M_1 , and S'' is the image of S'_0 , formed by M'_2 . The path difference of the two rays, travelling at the angle θ , is $2d \cos \theta$.

In der Figur ist ein Lichtstrahl mit dem Winkel θ zur optischen Achse einge-zeichnet. Der Gangunterschied der beiden Strahlen lässt sich aus der Figur ablesen und beträgt dem entsprechend $x = 2nd \cos \theta$ Dabei ist n der Brechungsindex des Mediums. Ein idealer Strahlteiler teilt die Intensität zu gleichen Teilen mit

der Intensität I_0 auf und damit ist die Intensität am Detektor für diesen Punkt gleich $I = 2I_0(1 + \cos \delta)$

Und die Phasendifferenz der beiden Strahlen ergibt sich in diesem fall zu $\delta = \frac{2\pi x}{\lambda} = \frac{2\pi}{\lambda} 2nd \cos \theta$

Man erhält also ein Interferenzmuster. Dabei gelten folgende Bedingungen für die Maximale Interferenz:

 $\delta = l2\pi, \qquad l = 0, \pm 1, \pm 2, \pm 3, \dots$ $2nd\cos\theta = l\lambda, \qquad l = 0, \pm 1, \pm 2, \pm 3, \dots$

Wenn die Strahlen parallel zur optischen Achse sind ($\theta = 0$), das Medium Vakuum ist (n = 1) und die Punktlichtquelle S₀ monochromatisches Licht liefert, dann ist der Gangunterschied zwischen 2 Strahlen x = 2d und damit ist die Intensität F des Interferometers gleich

$$F = 2I_0 \left[1 + \cos(2\pi \nu \underline{2d}) \right]_x$$

IR: Interferogramm Monochromatisches Licht

Die Intensität des Interferometers als Funktion des Spiegelweges d sieht dann folgendermaßen aus. Maxima haben den Abstand $\lambda/2$ bezogen auf den Spiegelweg d, bzw. λ bezogen auf den Gangunterschied x.

Figure 6.4: Output intensity F in the optical axis of a Michelson interferometer as a function of the distance d.

IR: Interferogramm Polychromatisches Licht

So sieht ein Interferogramm für polychromatisches Licht aus. Durch die gleichzeitige Überlagerung der verschiedenen Wellenlängen ergibt sich die charakteristische Form der Intensität gegen Spiegelweg Kurve.

IR: Interferogramm

F(x) bezeichnet man als Interferenzaufzeichnung. Die Interferenzaufzeichnung das ist gesamte Interferenzsignal des gesamten Spektrums gemessen als Funktion des Gangunterschiedes Χ. In der Interferenaufzeichnung steckt wie man in der Figur sieht ein konstanter Term, den man aus der Gleichung entfernen kann.

 $\frac{1}{2}F(0) = 2\int_{0}^{\infty} E(v) \,\mathrm{d}v$

In diesem Term steckt keine spektrale Information. Diese ist nur in der Abweichung von diesem Wert enthalten. Die Subtraktion liefert dann die Gleichung für das so genannte Interferogramm I(x), dass also die Intensität des IR Lichtes als Funktion des Gangunterschiedes, und damit als Funktion der Spiegelposition darstellt.

$$I(x) = F(x) - \frac{1}{2}F(0) = 2\int_{0}^{\infty} E(v)\cos(2\pi vx) dv$$

IR: Interferogram

Interferogram aus der Messung einer Methanol Probe. Mit diesen Rohdaten wird die Fouriertransformation durchgeführt.

IR: Einkanalspektrum

Nach der Furier Transformation erhält man das Einkanalspektrum. Davon muss man noch das Referenzspektrum abziehen.

IR Spektrum von Methanol

Das Ergebnis der Messung nach der Fouriertransformation und dem abziehen des Refernzspektrums ist dann das eigentliche IR Spektrum.

Aufbau eines FTIR Spektrometers

- 1...Lichtquelle
- 2...Fokussierspiegel

3...Aperturblende

4...Defokussierspiegel

5...Strahlteiler

6...Fester Spiegel

7...Beweglicher Spiegel

8...Fokussierspiegel

- 9...Probenraum
- 10..Probe
- 11..Fokussierspiegel
- 12..Detektor

13..HeNe LASER

14..Spiegel

- 15..Spiegel
- 16..Spiegel
- 17..LASER Detektor

AES: Auger Prozess

AUGER ELECTRON EMISSION

Anregungsprozess (a) durch Elektronenbeschuss und Emissionsprozess (b) durch Abgabe eines Elektrons bei der Auger Elektronen Spektroskopie. K, L_I, L_{II} und L_{III} sind die dabei involvierten Schalen. Die kinetische Energie des so genannten Elektrons Auger vom Emissionsprozess wird gemessen.

AES: Spektrum

Fig. 2.2. Auger spectra from a beryllium sample [8]. a) Energy distribution N(E). b) First derivative dN(E)/dE.

Darstellung eines AES Spektrums von Be. Die Kurve (a) zeigt das direkte Signal. Man sieht nur kleine Peaks auf einem hohen Hintergrundsignal. Die Kurve (b) zeigt das differenzierte Signal, bei das Signal viel dem deutlicher zu sehen ist.

AES: Tiefenprofil

Ein AES Tiefenprofil erhält man indem man für ein bestimmtes Element die Peakhöhe (Peak zu Peak im differenzierten Signal) misst. Zwischen den einzelnen Messpunkten wird die Oberfläche durch Sputtern abgetragen.

Fig. 2.23. Composition profiles for Si, P, O and C on oxidized silicon after predeposition of P. After Palmberg [43].

AES: Schichtwachstum

Durch regelmäßige Aufnahme eines AES Spektrums während des Aufdampfens kann man auch das Schichtwachstum verfolgen. In diesem Fall Cäsoim auf Silizium.

Fig. 2.18. Auger spectra for Si(100) as a function of Cs coverage. The energy of the primary electrons was $E_p = 300$ eV. After Weber and Peria [11].

AES: Elektronenausbeute

Der Emissionsprozeß kann neben der Elektronen Abgabe auch über die Abgabe eines Röntgenquants erfolgen. Dabei hängt die jeweilige Ausbeute von der Ordnungszahl der Atome ab.

Fig. 2.15. Auger electron and x-ray yields per K-electron vacancy as a function of the atomic number. After Siegbahn et al. [24b].

AES: Ionisationsquerschnitt

Der Ionisationsquerschnitt ist das Verhältnis der Energie der anregenden Elektronen zur Energie der gebundenen Elektronen. Um Auger Signale zu quantifizieren zu können, muss man den Ionisationsquerschnitt der beteiligten Elemente genau kennen.

Fig. 2.17. Total K-shell ionization cross sections for C, N, O and Na adsorbed on W(100) as a function of E_p/E_i . The dashed lines were computed from the first Born approximation theory. After Gerlach and DuCharme [60b].

XPS: Photoelektronen Prozess

Beim XPS wird ein Elektron aus einer inneren Schale (K) durch Beschuss mit Röntgenstrahlen herausgeschlagen. Die kinetische Energie dieses Photoelektrons wird dann gemessen.

XPS Prozess

Man regt also mit Röntgenstrahlen bekannter Energie hv an. Die kinetische Energie der Photoelektronen $\mathsf{E}_{\mathsf{kin}}$ wird Die Bindungsenergie des gemessen. Elektrons in der Probe E_h ist gesucht. Man also, dass unter sieht man der Voraussetzung, dass man die Austrittsarbeit des Detektors $e\Phi_{SP}$ kennt folgende Formel braucht:

$$E_b = hv - E_{kin} - e\Phi_{SP}$$

Fig. 4.3. Energy level diagram for photoelectron spectroscopy. A photon of energy hv is absorbed by an electron at a level E_b below the Fermi level E_F . The measured kinetic energy E_{kin} of the ejected electron is given by eq. (4.2).

XPS Spektrum

XPS Spektrum einer Stahlprobe. Man findet Fe, Cr und C. Es ist die Elektronenausbeute als Funktion der Bindungsenergie der Elektronen aufgetragen.

XPS: Aluminiumfolie

Im XPS Spektrum von Aluminiumfolie findet man neben metallischem Al auch verschiedene Aluminiumoxide die den passiven Film des unedlen Metalls formen. Dabei wurden die Einzelnen Komponenten durch fitten an die gemessene Kurve (schwarz) gefunden.

STM: Piezoeinheiten

STM: Grobannäherung

STM: Spitzenpräparation

Wolfram Spitzen werden durch elektrochemisches Ätzen Natriumlauge in hergestellt. Dabei wird zwischen der Spitze und der ringförmigen Elektrode eine Spannung angelegt. Nach einiger Zeit reißt der Draht durch sein eigenes Gewicht und man hat 2 Spitzen.

STM: Tunneleffekt

Das Anlegen einer Spannung zwischen der Spitze und der Probe ermöglicht das Tunneln der Elektronen, ohne dass die Austrittsarbeit überwunden werden muss.

STM: Tunneleffekt

Im STM sieht man je nach Tunnelbedingungen besetzte oder unbesetzte Zustände.

Wenn die besetzten Zustände der Probe energetisch höher liegen als das Fermi Niveau in der Spitze, dann geht der Tunnelstrom von der Probe in die Spitze (links). Wenn das Fermi Niveau der Spitze energetisch höher liegt als unbesetzte Zustände in der Probe geht der Tunnelstrom von der Probe in diese unbesetzten Zustände.

STM: besetzte, unbesetzte Zustände

Besetzte Zustände in SiC (0001) (3x3)

Unbesetzte Zustände in SiC (0001) (3x3)

STM: Barrier Height Imaging

Beim Barrier Height Imaging wie z.B. bei einer Legierung wird durch periodisches variieren des Abstandes der Spitze zur Probe die Austrittsarbeit gemessen, da die Änderung des Tunnelstroms mit dem Abstand der Wurzel aus der Austrittsarbeit proportional ist.

STM: Atom Manipulation

Indem man durch entsprechende Änderung der Spannung zwischen Spitze und Probe einzelne Atome an die Spitze heftet, kann man diese Atome an beliebige Stellen der Oberfläche bringen.

Das Wellenmuster, dass man sieht kommt von den Ladungsdichtewellen.

XRF: Massenabsorptionskoef.

Abb. Röntgenabsorptionsspektren von Blei und Silber

Massenabsorptionskoeffizienten von Elementen zeigen eine komplexe Wellenlängenabhängigkeit, charakteristisch sind scharfe Unstetigkeiten (Absorptionskanten) die mit den notwendigen Energien zum Herausschlagen von Elektronen aus den unterschiedlichen Energieniveaus (⇒ Photoeffekt) zusammenhängen

XRF: Compton Streuung

Die Compton Streuung ist die unelastische Streuung von Röntgenstrahlen. Dabei kommt es also zu einem Energieverlust der Photonen. Die Energie ist dabei von der Wellenlänge und vom Beobachtungswinkel abhängig.

Normalisierte Compton-Streuung als Funktion des Beobachtungswinkels

XRF: rechtwinkliger Aufbau

Schematischer Aufbau eines XRF Gerätes.

XRF: Moseley Diagramm

Das Gesetz von Moseley beschreibt den Zusammenhang zwischen der Energie der emittierten Strahlung und der Ordnungszahl desElements sowie den Hauptquantenzahlen der beteiligten Schalen der Elektronen-hülle:

XRF: Anregung

Ein Elektron aus der K-Schale wird durch Wechselwirkung mit der Strahlung einer externen Röntgenquelle herausgeschlagen.

XRF:K-Linien

XRF: L-Linien

Wenn eine entstandene Lücke in der L-Schale aufgefüllt wird (Lücke durch primäre Röntgentrahlung oder nach K α Emission) – Auffüllung durch Elektronen aus M- oder N- Schale) \Rightarrow L-Linien

XFR: Energieniveau Diagramm

Abb. Energieniveaudiagramm mit einigen für Röntgenfluoreszenz typischen Übergängen (n = Hauptquantenzahl, I = Nebenguantenzahl (s-, p-, d-, f-Orbitale), j = innere Quantenzah

L

Lm

3/2 1/2

1/2

2 1 2 1 2 0

XRF: Spektren

Leichtere Elemente (bis ca. Z = 25) zeigen hauptsächlich ein K α -Dublett (nicht aufgelöst). K β -Linien liegen bei höheren Energien.

XRF: Spektren

Anregungsenergie: 40 keV

Mittelschwere Elemente (25 < Z < 57) zeigen zusätzliche L-Linien (L α , L β und L γ).

XRF: Spektren

Anregungsenergie: 40 keV

Schwerere Elemente (Z > 57) zeigen bei den oben gewählten Bedingungen (Anregungsenergie) keine K-Linien mehr (Anregungspotential > 40keV), dafür aber M-Linien.

XRF: Fluoreszenzausbeute

Die Fluoreszenz-Ausbeute ω gibt die relative Häufigkeit der Emission eines Fluoreszenzphotons (in Konkurenz zur relativen Häufigkeit der Freisetzung eines Auger-Elektrons χ). Näherungsberechnung von ω : 7^4

$$\omega = \frac{Z^4}{A + Z^4}$$

Mit $A = 9 \cdot 10^5$ für die K-Serie; $A = 7 \cdot 10^7$ für die L-Serie; $A = 1 \cdot 10^9$ für die M-Serie \Rightarrow Auger-Elektron- und Röntgenphoton-Emission sind zwei konkurrierende Effekte ($\omega + \chi = 1$)

XRF: Spektrum der Röntgenquelle

Auch die Röntgenquelle selbst zeigt charakteristische Linien im Spektrum. Daher kann man mit einem Filter die Strahlung der Quelle Monochromatisieren.

XRF: Monochromatisierung

Abb. Einsatz eines Zr-Filters zur Erzeugung monofrequenter Röntgenstrahlung

XRF: Wellenlängendispersiv (WD)

Schematischer Aufbau eines wellenlängen dispersiven XRF.

XRF: Kollimatoren

Schematischer Aufbau und Skizze der Wirkungsweise eines Kollimators. Elektronenmikroskopische Aufnahme eines Kollimators.

XRF: Detektoren (WD)

XRF: Energiedispersiv (ED)

Abb. Schematischer Aufbau eines energiedispersiven RFA-Gerätes

XRF: Radioaktive Quellen

Source	Activity millicuries (mCi)	Half-Life (Year)	Excitation Energy (KeV)	Elemental Analysis Range	
Co-57	40	0.75	121.9	Cobalt to cerium Barium to lead	K Lines L Lines
Fe-55	20 - 50	2.7	5.9	Sulfur to chromium Molybdenum to barium	K Lines L Lines
Cd-109	5 - 30	1.3	22.1 and 87.9	Calcium to rhodium Tantalum to lead Barium to uranium	K Lines K Lines L Lines
Am-241	5 - 30	458	26.4 and 59.6	Copper to thulium Tungsten to uranium	K Lines L Lines
Cm-244	60 - 100	17.8	14.2	Titanium to selenium Lanthanum to lead	K Lines L Lines

XRF: Verschiedene Geräte

XRF: Anregung mit Elektronen

Auch in einem Elektronenmikroskop kann man Röntgenfloureszenz messen. In diesem Fall wird durch den Elektronenstoß angeregt. Ansonsten ist der Detektionsaufbau analog wie beim normalen XRF.