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1 Introduction

Many physical properties of a solid body are partly or fully determined by
electrons. Nearly everyone knows that they transport charge and energy.
But there are many more things they are responsible for. In a solid body,
properties depend on lattice dynamics (phonons) and on the electronic band
structure (electrons). Both parts contribute to different properties, as for
instance the thermodynamic properties. Some properties are only dependent
on the electronic structure such as magnetism, the chemical potential or if
the solid is a metal, a semimetal or an insulator.
If the electronic structure of a solid is known, it is possible to calculate the
electronic part. Often integrals like equation (1) are needed to calculate a
property. One can try to solve the integral but this is most of the time very
complicated or not possible. Another way is to use the Sommerfeld expan-
sion. It was Arnold Sommerfeld, as the name suggests who invented this
expansion. The main advantage of the Sommerfeld-expansion is, that it’s
yielding to rather easy mathematical exressions with the use of an approxi-
mation in (1). The approximation is nearly exact at low temperatures, which
means in this case low in respect to the Fermi-energy. This means a few 100
degrees Kelvin which is basically the range of interest. A precise derivative
and the reason for this can be seen under 2.
So this expansion is a powerful tool to gather information about properties
of a solid. Even if the results are only approximate, one should get a better
understanding how a property is reacting if the temperature is changed.
It has to be mentioned that all density of states (DOS) are numerically cal-
culated and not experimentally determined. The reason for this is, that in
the experiment always measurement uncertainties occur. The formula for the
Sommerfeld expansion needs either the density of states or the slope of the
DOS at the Fermi energy. This is a problem when experimental data is used.
For one reason, the uncertainty changes the slope of the DOS and for the
other the value at the Fermi energy is changed. One can look in [6] to see this.
So this work is also going to take a closer look at numerically calculated DOS
and which results they are delivering with the Sommerfeld expansion. This
Bachelor work tries to take a closer look on the advantages and disadvan-
tages of this approximation and how this could be used in solid state physics.

3



2 The Sommerfeld expansion

Before we start with the mathematical derivative of the Sommerfeld expan-
sion, we should take a closer look at the idea behind it. Some properties of
a metal can be calculated with an integral of the following form.

I =

∫ ∞
0

g(E) · f(E) dE (1)

This integral consists of one part with the Fermi-Dirac distribution and
one part of some function of energy. If we now make a integration by parts
(see equation (2)) we obtain the derivative of the Fermi-Dirac distribution,
which is sharply peaked around the Fermi energy. Figure 1 shows this graph-
ically.

Figure 1: left: The Fermi-dirac distribution for a few temperatures T right:
The derivative of the Fermi-dirac distribution for the same temperatures.

In the figures above it’s easy to see that the derivative of the Fermi Dirac
distribution is only nonzero in a region around a few kbT of the Fermi energy.
This means that only the electrons around the Fermi energy are contributing
to the different properties. This is easy to understand, because it is not
possible for a lower lying electron to jump to a higher energy level, because
this is already occupied. Lower lying electrons can only jump over the Fermi
energy when the thermal energy is high enough. So low thermal energies
means a sharp peak of the derivative of the Fermi Dirac distribution. Hence
for low thermal energies (up to a few 100◦K) we can expand the whole integral
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around EF and we will get a good approximation of the integral. This means
we expand the integral (1) in a Taylor series which is done in the following
part. First of all, we show the Sommerfeld expansion in a general case. All
off the following equations and mathematical derivatives are also in [3].

We start with (1)

I =

∫ ∞
0

g(E) · f(E) dE

We can use partial integration. This yields to (2).

I = G(0) · f(0)−G(∞) · f(∞)−
∫ ∞
0

G(E) · d(f(E)

dE
dE (2)

where G(E) =

∫ E

0

g(E ′) dE ′. and the first two parts are zero because

f(∞) has to be zero and G(0) is also zero by definition.

If we consider the negative derivative of the Fermi function, we see that
it is sharply peaked around the Fermi energy (see Figure 1). This means
that only a narrow interval (usually around a few kBT ) is contributing to
the integral. So it doesn’t matter when we expand the integration interval
to −∞ and ∞. This helps us to calculate integrals as in (4).
The next step is to expand G(E) around µ. This yields to (3)

G(E) = G(µ) + (E − µ) ·
(
d(G(E))

d(E)

)
E=µ

+
1

2
· (E − µ)2 ·

(
d2(G(E))

d(E)2

)
E=µ

...

(3)
The combination of (2) and (3) yields to (4):

I = G(µ) ·
∫ ∞
−∞

(
−d(f(E)

dE

)
dE+G

′
(µ) ·

∫ ∞
−∞

(E−µ) ·
(
−d(f(E)

dE

)
dE... (4)

Since
d(f(E))

d(E)
is even in E − µ the odd terms vanish in (4)

and

∫ ∞
−∞
−d(f(E)

dE
= 1. This leaves us with:
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I = G(µ) +
∞∑
n=1

1

2n!
·
(
d2n(G(E))

d(E)2n

)
E=µ

·
∫ ∞
−∞

(E − µ)2n ·
(
−df(E)

dE

)
dE (5)

To solve the integral in (5) we make use of (6) without mathematical
derivative. (if needed see [3])

c2n =

∫ ∞
−∞

x2n

2n!
·
(
− d

dx

1

ex − 1

)
dx. = 2 ·

∞∑
l=1

(−1)l+1

l2n
= 2(1−21−2n)ς(2n) (6)

Combining (5) and (6) yields to:

I = G(µ) +
∞∑
n=1

c2n · (kBT )2n · d
2n(G(E)

dE2n

∣∣∣∣
E=µ

(7)

This is the Sommerfeld expansion. If we consider that g(E) =

∫ ∞
−∞

G(E) dE

equation (7) yields the final Sommerfeld expansion for different g(E):

I = G(µ) +
∞∑
n=1

c2n · (kBT )2n · d
2n−1(g(E)

dE2n−1

∣∣∣∣
E=µ

(8)

3 Derivative of different thermodynamic prop-

erties

3.1 The chemical potential

We start with the Sommerfeld expansion for the electron density

n =

∫ ∞
−∞

D(E)f(E) dE (9)

With the Sommerfeld expansion we get:

n =

∫ µ

−∞
D(E) dE +

π2

6
· (kB · T )2 · d(D(E))

dE

∣∣∣∣
E=µ

+O((kB · T )4) (10)
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The term of order O((kb ·T )4) is very small and can therefore be neglected.
This is also true for all following expansions. Since the chemical potential
differs very little from its T = 0 value EF , we can expand the first integral
in (10) into a Taylor series around EF .∫ µ

−∞
D(E) dE =

∫ EF

−∞
D(E) dE + (µ− EF ) ·D(EF ) (11)

The first integrand in equation (11) is the electron density at T = 0.

n = n(T = 0) + (µ− EF ) ·D(EF ) +
π2

6
· (kB · T )2 ·D′

(µ) (12)

For low temperatures the electron density can be taken to be constant.
So n = n(T = 0). Because the chemical potential differs very little from its
zero temperature value, we can simplify equation (12) to :

µ = EF −
π2

6
· (kBT )2 ·D

′(EF )

D(EF )
= EF −

π2

6
· (kBT )2 · d

dE
ln(D(E))

∣∣∣∣
E=EF

(13)

This is the Sommerfeld expansion for the chemical potential. When T
goes to zero the chemical potential goes to EF as it should be. The behaviour
is of quadratic order and is a good approximation to a few hundred degrees
Kelvin.

3.2 The internal energy and specific heat

As we know the internal energy is given by:

u =

∫ ∞
−∞

ED(E)f(E) dE (14)

We use equ.(8) and set g(E) = ED(E) and obtain:

u =

∫ µ

−∞
E ·D(E) dE +

π2

6
· (kBT )2 · dg(E)

dE

∣∣∣∣
E=µ

=∫ µ

−∞
E ·D(E) dE +

π2

6
· (kBT )2 · (D(µ)− µD(µ))

(15)

Again we expand the integral around EF and for low temperatures where
µ is about EF , we get:
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u =

∫ EF

−∞
E·D(E) dE+(µ−EF )·EF ·D(EF )+

π2

6
·(kBT )2·

(
D(EF )− EFD

′
(EF )

)
(16)

If we use (13), we get for the internal energy the equation:

u =

∫ EF

0

ED(E)DE +
π2

6
· (kBT )2 ·D(EF ) (17)

This is the Sommerfeld expansion for the internal energy. With this
equation the specific heat is easy to calculate and yields:

cV =

(
du

dT

)
V=const

=
π2

3
· k2BT ·D(EF ) (18)

So the electronic specific heat of a metal is linear with the temperature.
To get the whole specific heat of a metal one has to calculate also the phononic
part (see [2, 1]). The electronic part can be written as cV el = γ · T , where
γ is the so called Sommerfeld coefficient. Under 4.3 these coefficients are
calculated for a few metals and compared to experimental data.

3.3 Entropy and the Helmholtz free energy

The entropy can be easily calculated, if we take the thermodynamic relation

for the specific heat cV =
1

V
· ∂Qrev

∂T
and use the thermodynamic equation

for the entropy.

s =
1

V
·
∫ T

0

∂Qrev

T
=

1

V
·
∫ T

0

CV
T ′ dT

′
=
π2

3
· k2BT ·D(EF ) (19)

So in this approximation the entropy is equal to the specific heat. This
result can also be obtained by starting with the grand canonical sum of
statistic thermodynamics and applying the Sommerfeld expansion to it (see
[3]).

The Helmholtz free energy is now easy to calculate since only the entropy
and the internal energy have to be known.

f = u− Ts = u(T = 0)− π2

6
· (kBT )2 ·D(EF ) (20)
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3.4 Pauli paramagnetism and Landau magnetism

This part deals with the magnetic properties of a metal and how the electrons
affects these properties. If we take a look at the properties of electrons we
already know that they are carriers of a charge, but they also have an intrinsic
spin. This spin is inducing a magnetic field. So it should be expected that
the DOS is closely related to the magnetic properties. The derivative of
the formulas in table 1 doesn’t need the Sommerfeld expansion but it shows
that also these properties are only dependent on the density of states. The
derivative of the formulas is complicated and is therefore not done in this
work. A good derivative is given in [3].

We start with the Pauli magnetism which is a paramagnetic effect. Since
only two spin directions are possible, there are two densities of states. One
with spin up and one with spin down. If a magnetic field is applied, electrons
with a parallel spin move up in energy and electrons with an anti parallel
spin move down in energy. Hence this would mean, that one sort of electrons
occupies higher energies. This is not thermal equilibrium, so there has to be
a mechanism where the electrons with spin up move to levels below them.
Since only spin down levels are free the electron has to give up some of
its momentum and make a spin flip because of the Pauli principle. The
momentum change is done by transferring some of the momentum to the
lattice. With the fact that the energy shift depends only on the spin quantum
and not on the momentum of the electron, following equation can be derived.

χPauli =
1

4
· µo · (geµB)2 ·D(EF ) (21)

Another sort of magnetism is the Landau diamagnetism which is a dia-
magnetic effect. Diamagnetic means that if an external field is applied the
diamagnetic material is going in the lower field direction. An external field is
affecting the orbital movement and is therefore changing the magnetic dipole
moment of the atom. The effect can only be described quantum mechanical
and leads to equation (22).

χLandau = −1

3
· χPauli = − 1

12
· µ0 · (geµB)2 ·D(EF ) (22)

In both equations only the zero temperature value has been taken. The
quadratic correction in temperature can be derived with the Sommerfeld
expansion ”but this correction does not have any practical importance in
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most metals.” ([3] p.45). So the quadratic term isn’t needed. Since there is
no temperature dependence the magnetism plots are missing in figure 7.

3.5 Summary

Name Formula Sommerfeld expansion

chemical potential µ

∫ ∞
0

D(E) · f(E) d(E) µ = EF −
π2

6
· (kBT )2 · D

′(EF )

D(EF )

internal energy u

∫ ∞
−∞

ED(E)f(E) dE u(T = 0) +
π2

6
· (kBT )2 ·D(EF )

specific heat cV

(
du

dT

)
V=const

π2

3
· k2BT ·D(EF )

Entropy s

∫ T

0

cV
T ′ dT

′ π2

3
· k2BT ·D(EF )

Helmholtz free energy f u− Ts u(T = 0)− π2

6
· (kBT )2 ·D(EF )

Pauli magnetism χPauli — 1
4
· µo · (geµB)2 ·D(EF )

Landau magnetism χLandau — − 1
12
· µ0 · (geµB)2 ·D(EF )

Table 1: The properties and the obtained formulas with Sommerfeld expan-
sion. Only terms up to second order of temperature were taken. This is in
most cases a good enough approximation
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4 Application of the Sommerfeld expansion

This section deals with the Sommerfeld expansion applied on some common
metals. It should show the strengths and weaknesses of this expansion and
how it can be applied to a given density of states. First of all it should be
mentioned that all in this document used DOS are numerically calculated
and therefore based on a theoretical model. This is, as mentioned in the
introduction due to a experimental problem. Methods as PES and IPES can
only show the DOS either below or above the Fermi energy. You can see a
short description of these methods under 5.

4.1 DOS and Wien2k

The program to produce the numerical calculated DOS is WIEN2k1. Ac-
cording to the information I got from Prof. Dr. Karlheinz Schwarz the
program uses 2 methods to produce the Density of States. One is, to take
large quantity of k points in the Brilloin zone of the crystal and calculate for
each k-point the energy. Then the program counts all the energy-values in an
interval of δE and plots the DOS as a histogram. This method isn’t good to
calculate the derivative and is therefore not used. The second method is the
tetrahedron method. This method splits the Brilloin zone in tetrahedrons
and calculates for each tetrahdron the contributions to the DOS by interpo-
lating the energy for the four corner points analytically. This more precise
method can be used to get the derivative. An example for a DOS calculated
by WIEN2k can be seen in figure 2. The green line is the free electron model.
(see Ref. [7])

1Inst. f. Material Chemistry, TU Vienna P. Blaha, K. Schwarz, G. Madsen, D. Kvas-
nicka and J. Luitz.

11



−6 −4 −2 0 2 4 6 8 10 12
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
DoS for sodium

D
oS

/
1

m
3
·e
V

Energy / eV

 

 

DoS
DoS of the free electron
Fermi−energy

Figure 2: The Density of States calculated for sodium by WIEN2k. The high
peaks are van Hove Singularities. See also 6

4.1.1 Results for different amount of used k-points

As already mentioned, the program uses a quantity of k-points and calcu-
lates the corresponding energy to each point. It is obvious, that the result
depends on the choosen amount of k-points. More k-points in the Brioullin
zone should lead to a more accurate result. It is now a question to find a
compromise between needed computation time and accuracy. To see, how
this is important for calculations with the Sommerfeld expansion a closer
look was taken, how different amounts of k-points affect the calculation re-
sult. Figure 3 shows two different calculations with 5000 k points and 100000
k points. Both calculations show the correct valence of three electrons. Al-
tought the Shape of the DoS is roughly the same, the Sommerfeld-expansion
would lead to complete different results. This is in order of the much bigger
oszillations of the DoS from 5000 k points. So this is a problem and shows
that the sommerfeld expansion is highly dependent on the accuracy of the
DoS, especially around the Fermy energy.
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Figure 3: 2 different calculations for the metal Aluminum.

4.2 The program for the Sommerfeld expansion

All plots and calculations where performed by a self written matlab program.
The program uses the calculated DOS to determine the derivatives at the
Fermi energy to calculate and plot the different thermodynamic properties
seen in table 1. The program is written for a certain type of data file which
is produced by WIEN2k. If another data file is used the program has to be
modified. Since the program isn’t very complex this should be no problem
for anyone. A documentation and description of the program is in the code.
The code can be seen in the appendix.

4.2.1 Important points for the calculation

There are certain points to be considered when calculating the properties.
An important point is the error of each calculated data point. Unfortunately
it was not possible for me to get the information how this error should look
like. Since it is not the goal of this work to get deeper into the calculation
program wien2k, there wouldn’t be an error analysis in the calculation of the
different properties. If someone takes a closer look at figure 2, he can see
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that there are high peaks at certain energies. This peaks are the result of

the following relationship: D(E) =

∫
Sn(ε)

1

4π3 · |∆E(k)|
dS (see Ref. [1] page

144) So if the gradient of the energy band goes to zero the integral diverges.

It can be shown that in three dimensions such singularities are
integrable, yielding finite values for D(E). However they result

in divergences of the slope dD(E)
dE

These are known as van Hove
singularities (Ashcroft & Mermin, 1976, p.145)

So if the Fermi energy is near or in the worst case at these singularities the
calculation cannot be performed with the Sommerfeld expansion. There is a
method to smooth out these singularities by applying a Gaussian broadening
to the DOS. This is ok, if the results are compared to experimental data,
since in experiments there is a natural smoothening of the DOS due to mea-
surement resolution. But if someone thinks about it, this method cannot be
applied to these calculations because it’s changing the slope of the curves.
Nonetheless there is a small broadening to get rid of numerical fluctuations.
This decision was made with Prof. Dr. Heinrich Sorman who performed the
calculations for me and figure 4 shows how different broadenings are affecting
the slope.
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Figure 4: The same DOS of aluminum 3 times with different gaussian broad-
ening. It is plotted around the Fermi energy.

Figure 4 shows how the Gaussian broadening is changing the slope of the
curve. In this particular case it shows, that at the Fermi energy there is
nearly no effect but if you go elsewhere that there is one on the slope. Hence
this should be considered before starting a calculation. For this calculations
the effects are small enough to be neglected. So it wasn’t tested for each
metal. It should only show that it could affect the calculation.

4.3 Results

The calculation has been performed for a few metals. Each metal delivers a
number of plots for the internal energy, the specific heat,... etc. All of these
plots can be generated with the Matlab program. Here only the values and
the derivatives of the DOS at EF are shown in table 2, so someone can use
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them and calculate all the properties with the formulas in table 1. For one
chosen metal the plots are shown in figure 7.

Metal D(EF )[ 1
Jm3 ] dD(E)

dE

∣∣∣
E=EF

[ 1
J2m3 ] n[ 1

cm3 ] V alence(calculated)

THUNGSTEN 3,21E+47 4,30E+99 7,60E+23 6,0
GOLD 1,03E+47 4,73E+98 6,48E+23 11,0

PLATINUM 8,21E+47 -2,76E+100 6,62E+23 10,0
ALUMINUM 1,31E+47 1,33E+97 1,810E+29 3,0

COPPER 1,52E+47 -2,08E+97 9,303E+29 11,0
POTASSIUM 7,42E+46 5,34E+97 1,397E+28 1,0

LITHIUM 1,56E+47 5,31E+98 4,734E+28 1,0
SODIUM 8,41E+46 4,27E+98 2,656E+28 1,0

VANADIUM 9,93E+47 3,99E+100 3,652E+29 5,1

Table 2: The numerical evaluated DOS and derivative of the DOS at the
Fermi energy. The electron density n is given per cubic centimetre and once
per unit cell which is the valence of the metal.

Table 2 shows the right valences of the metal. Since the program changes
units of the DOS in order to calculate the properties, this is a good way to
compare if the transformation to other units and the DOS is correct. With
these values other properties (see table 1) can be calculated. Figure 7 gives
an example for Na. A very useful and comparable result is the Sommerfeld
coefficient which can be seen in table 3. The magentic susceptibility can be
seen in table 4 and figure 5 shows the different values in respect to the atomic
number Z.
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Metal γcalc[ J
(K2∗m3)

] γexp[ J
(K2∗m3)

] γcalc[ mJ
(molK2)

] γexp[ mJ
(molK2)

]

THUNGSTEN 200,99 136,12 1,92 1,30
GOLD 64,74 71,43 0,66 0,73

PLATINUM 514,78 735,14 4,76 6,80
ALUMINUM 82,20 135,09 0,82 1,35

COPPER 95,11 97,55 0,68 0,69
POTASSIUM 46,55 45,75 2,12 2,08

LITHIUM 97,96 124,46 1,28 1,63
SODIUM 52,73 58,22 1,25 1,38

VANADIUM 622,84 1110,60 5,21 9,29

Table 3: Calculated und experimental values for the Sommerfeld coefficient.
Experimental values are from [2]

The calculated values with the Sommerfeld expansion are very good for
the alkali metals. Other metals than the s-band dominated alkali metals
show differences which could be due to the more complicated structure of the
bands at the Fermi energy. This is easy to see, if the value of the calculated
Sommerfeld coefficient of aluminum is considered. The value is significant to
low. In ([2] p.164) table 6.2 shows that the value of the free electron model is
γ = 0.912 mJ

mol·K2 . So the free electron value is closer to the experimental value
than the calculated one. All other calculations except vandanium are showing
better results than the free electron model. That the value of aluminum is
lying below can also be seen in figure 6 a). The density of states at the Fermi
energy lies below. Why the value is lying below of the free electron value
couldn’t be determined by myself. The programm Wien2k should deliver
very precise values for the Fermi energy and the DOS seems to be correct
since the valence is correct. So the reason for this isn’r really clear. It could
also be an error in the experimental value. The result for vandanium cannot
be interpreted in respect to the free electron model since there is no value in
table 6.2 in ([2] p.164). Copper is interesting because it is a transition metal
and showing a very good calculated value. The reason for this is easy to
see in figure 6 b). Copper shows at the Fermi energy again a s-electron like
behaviour. The more peaky d-bands which are way more critical for small
differences in the Fermi energy are lying below.
Table 4 shows the magnetic properties.
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Metal χexpm [m
3

kg
] χcalcm [m

3

kg
] χexpV [1] χcalcV [1]

THUNGSTEN 4,59E-09 1,20E-09 8,84E-05 2,31E-05
GOLD -1,78E-09 3,86E-10 3,44E-05 7,45E-06

PLATINUM 1,22E-08 2,81E-09 2,57E-04 5,93E-05
ALUMINUM 7,80E-09 3,51E-09 2,11E-05 9,47E-06

COPPER -1,08E-09 1,23E-09 -9,63E-06 1,10E-05
POTASSIUM 6,70E-09 6,23E-09 5,76E-06 5,36E-06

LITHIUM 6,30E-09 2,13E-08 3,34E-06 1,13E-05
SODIUM 6,40E-09 6,26E-09 6,21E-06 6,07E-06

VANADIUM 6,28E-08 1,18E-08 3,82E-04 7,17E-05

Table 4: Calculated und experimental values for the mass susceptibiltiy and
the volume susceptibility. Experimental values are from [14].

The calculation of the different susceptibility doesn’t show the same re-
sults as the Sommerfeld coefficient. Also for an alkali metal the value could
be very bad in respect to the experimentally determined. You can see this for
example in table 4 for lithium. The reason for this is, that magnetism isn’t
so easy to describe and that it is more complicated than the simple models
suggest. This is true also for other simple models (see [8]). The problem is
that these models aren’t taking into account that there is also an electron
electron interaction which has an affect on the magnetic properties. On the
other hand there are also really pretty results as for example for potassium.
Also this fact isn’t easy to explain and I’m also not sure why the expansion is
obtaining good results for potassium but it is probably depending on many
parameters.

If one is only interested on an overview over the magnetic properties and
the specific heat one can look at figure 5 where the density of states at the
Fermi energy , the magnetic susceptibility and the Sommerfeld coefficient
is plotted for different elements. If table 1 is considered one sees that the
specific heat, the entropy and the magnetic properties are proportional to
the DOS at the Fermi energy. This means figure 5 shows the crude relations
between different metals. A high DOS at the Fermi energy means a high
magnetic sucseptibility and a high sommerfeld coefficient which can be seen
in table 3 and figure 5. The experimentally determined values show with lit-
tle differences to the calculated ones the same relations between the different
elements. This shows again that the values calculated with the Sommerfeld
expansion may not be exactly correct but they show about the right relation
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to each other. This should mean that, if one knows the magnetic suscepti-
bility of aluminum he knows by looking at figure 5 that vanadium is going
to have a much bigger value. For the magnetic properties there has also to
be considered if the metal is para- or diamagnetic.

Figure 5: The Density of states at the Fermi energy, the magnetic sucsepti-
bility and the sommerfeld coefficient in respect to the atomic number Z. A
big value of D(EF ) corresponds with a high sommerfeld coefficient and high
magnetic susceptibility.

All calculated band structures are shown in the following figure. The
values and formulas for the calculation of the free electron model (green line)
can be seen in [7] or [1]. Figure 7 shows the results for Na.
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Figure 6: All by Wien 2k calculated density of states
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(a) chemical potential (b) Internal energy

(c) Specific heat (d) Entropy

(e) Helmholtz free energy

Figure 7: All calculated thermodynamic properties for sodium
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5 Experimental Methods to evaluate the DOS

5.1 PES

PES or Photoemission spectroscopy is a method to gather information about
a solid such as electronic structure or chemical composition. Which prop-
erty should be analyzed depends on the chosen PES method. The three
main types of PES are UPS, XPS and ARPES. There are many other special
types of PES but all of them are based on the same physical principle, the
outer photoelectric effect. This photoelectric effect was discovered by Hein-
rich Rudolf Hertz and Wilhelm Ludwig Franz Hallwachs in the 19. Century
and later described by Albert Einstein. They found out, that if a metal is
illuminated by light a current is flowing when a electrical field is present. The
amount of current is not dependent on the intensity, but on the frequency of
the light. This discovery led to the understanding of light as photons. The
incoming photon with the energy h · ν hits an electron in the solid and is
loosing the whole energy to the electron which is excited to a higher state
or if the energy is high enough, the electron can leave the metal. The dif-
ference of the photon energy and the bounding energy of the electron and
work function is the kinetic energy of the electron. Hence this energy can
give information about the electronic structure of a metal. To determine the
DOS only UPS and ARPES are used. XPS is used for chemical analysis.
XPS uses energies which are sufficient to excite core electrons. This core
levels are characteristic for each element and are therefore used for chemical
analysis. UPS is ultraviolet photo electron emission and is described below.
ARPES is angle resolved photo emission spectroscopy and can also give in-
formation about the momentum of the electron and hence also the dispersion
relationship or the Fermi surface can be measured (see [9]).

5.2 UPS

UPS as the name suggest uses ultraviolet light to excite electrons in the
metal. The energy is in about the range of the valence electrons and delivers
therefore only information about the valence band structure. Mostly a He gas
lamp is used because of the very sharp spectral lines. This leads to a energy
resolution about 10−3 eV. The energy filtering is made with a hemispherical
electron analyzer as shown in figure 8.
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5.3 ARPES

Angle resolved PES can also obtain information about the dispersion relation-
ship and the Fermi surface. Hence this method is one of the most important
to get information about electronic structuring in solids. The principle is
similar to UPS or other PES methods. The only difference is that also the
angle of the photo electrons is measured (see figure 8). Since the k value is
dependent on different directions in the crystal, this gives information about
the dispersion relationship of the electrons. ( a better explanation can be
seen in [5])

Figure 8: Schematic picture of the ARPES method. [9]

To get a good angle and energy resolution the electronic lenses of the
analyzer have to be prepared for a very small angle. That means that only
electrons from a small dihedral angle can go into the analyzer. Today reso-
lutions of 0,2 degree and 1-2 meV are possible (see Ref. [9] ).

5.4 IPES or BIS [6, 9]

Inverse Photoemission spectroscopy or Bremstrahlung isochromat spectroscopy
is the inverse process of the photoemission spectroscopy. Here a beam of
electrons is directed on the sample surface instead of photons. The electron
penetrates into the bulk and couples with some probability into an unoccu-
pied state of the bulk. The coupled electron can now go to lower states by
radiating energy or by nonradiative decay through inelastic electron-electron
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scattering. These two processes are in competition with each other. If the
electron decays by radiating light the emitted photon is carrying information
about the unoccupied state. So it is now possible to get information about
the unoccupied states by analysing the photon energy and hence the density
of states above the Fermi energy can be measured.

6 Conclusion

It turns out that the Sommerfeld expansion is a very easy way to calculate
properties, because the formulas are very simple and easy to derive. The
approximation should be really good for temperatures of a view hundred
degrees Kelvin. One disadvantage is that the model is only considering the
electronic part. So the property which is sometimes dependent on both parts
shows only the electronic behaviour which makes it difficult to get experi-
mental data on this property. In nature it is not always easy to separate the
electronic part from the phononic. Nevertheless the expansion can show what
a property, which is almost fully dependent on the electronic part, is going to
do if the temperature is changed. This is helping to understand the property
of the metal even if the result is not absolutely correct. Another problem
is that the Sommerfeld expansion is not really applicable on experimental
data. The reason is easy. For the expansion either the slope or the value
of the DOS at the Fermi energy is needed. An experimental evaluated DOS
has measurement uncertainties which are changing the slope and probably
also the value at the Fermi energy. So only numerically calculated DOS can
be used. One goal of the work was to look how good such calculated DOS
are to calculate properties like in table 1. In the case of the Sommerfeld co-
efficient, experimental data could be found for all calculated metals. These
values are listed and compared in table 3. The alkali metals are showing
a good correlation with the experimental data. The transition metals are
except for copper not so good. Aluminium as a non transition metal is also
showing a difference in the calculated value. As section refkpoints shows, is
the calculation sensitive on how many k-points are considered. This may be
the reason for this discrepancy in the case of Aluminum. There may be also
another reason for this but since the calculations were performed external it
was not possible for the autor to take a closer look on this. This is valid for
all DOS calculations in this work. Additionaly, metals with a peaky DOS
around the Fermi energy are much more prone to calculation errors. Espe-
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cially transition metals are often showing a peaky DOS in this region. Except
for Copper which is interesting, because it is a transition metal but if shows
a very good value for the Sommerfeld coefficient. Copper is showing s-band
like behaviour which is probably the reason for the very good value of the
calculated Sommerfeld coefficient. Vandanium is also showing a value which
is not very good. The reason is probably again the peakier d-band structure.
The magnetic properties in table 4 are showing a little bit different results.
There are also bad values for alkali metals. This is probably so because the
magnetic properties of a metal aren’t so easy to describe. But if you look
at figure 5 you see that most values are about the same and that the crude
relations are true. For example the calculated value of vanadium is bigger
than aluminium and so on. All in all the Sommerfeld expansion is a good
model to calculate properties for the alkali metals and to show how different
properties relate to each other.
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A Matlabprogram

The following program can be used to calculate all properties execept the
magnetic properties. The basis for these calculations is the Density of states
file. These files are generated with Wien 2k. If someone has another data
file the program fun load data.m has to be changed. The documentation of
the code is in the code.

A.1 function sommerfeldexpansion (main)

% Sommerfeld Expansion

% Thomas Ganner

% Bachelor-Work

% 24.11.2009 (Sormann-Version)

function sommerfeldexpansion

clear

Important:

Always use row vectors All calculation is in SI except for the DOS plots (in
eV)!!!

physical constants

const = struct;

const.bohr = 52.9177e-12; %[m]

const.q_e = 1.60217733e-19; %[As]

const.m_e = 9.1093879e-31; %[kg]

const.h_quer = 1.054571628e-34; %[Js]

const.kb_J = 1.380658e-23; %[J/K]

const.kb_eV = 1.380658e-23/1.60217733e-19; %[eV/K]
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Get data

%+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

% This part is responsible for loading all the data-files

% into the program. Only files with *.DOS ending are

% considered. For other data files the function

% fun_loaddata_mod has to be changed.

%+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

cd ’E:\uni\6.semester\bak\density of states data’;

A = dir(’*.DOS’); %get all files with ending *.DOS

B = struct2cell(A); %change A from struct to cell.

der_table_element = zeros(size(B,2),12); % element

der_table_DOS = zeros(size(B,2),1); %D(Ef)

der_table_dDOS = zeros(size(B,2),1); %dD(E)/dE E = Ef

for i =1:size(B,2); %This loop performes the calculations

% for each data file

filename = A(i).name; %get filename

filename = filename(1:end-4); %delete the ending *.DOS

% ++++++++++++++++++++++++++++++++++++++++++++++++++++++++

% fun_loaddata_mod loads the data files with ending .*DOS.

% contains 5 columns. only the first 2 are necessary for

% the calculations. the Energy, DOS_all is the overall

% density of states (s,d,f..band together)

[Energy,DOS_all,V_uc,element{i}] = fun_loaddata_mod(...

’E:\uni\6.semester\bak\density of states data’,...

A(i).name,const.bohr);

%+++++++++++++++++++++++++++++++++++++++++++++++++++++++

% Here all the values are changed in SI einheiten

eVEnergy = Energy.’;

Energy = (Energy*const.q_e).’;

eVDOS = DOS_all;

DOS = (DOS_all./(V_uc*const.q_e)).’;

[Fermi_Energy,position_Ef] = min(abs(Energy));

% get the Fermi Energy. usually the data from the

% simulation contains no value with exactly zero. So the
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% closest value is searched. Later after the spline

% the Fermi energy is set to exactly zero.

%+++++++++++++++++++++++++++++++++++++++++++++++++++++++

% For the expansion the derivative of g_... is needet at

% the Fermi energy.To get the derivative a spline

% interpolation is made around the Fermienergy which

% is set to zero.

%+++++++++++++++++++++++++++++++++++++++++++++++++++++++

%Make sure that the point E = 0 = Ef is in the vector

ptsp = 5; %points to spline

get_points_minusEtozero = ...

linspace(eVEnergy(position_Ef-ptsp),0,100);

get_points_minusEtozero = ...

get_points_minusEtozero(1:(end-1));

%otherwise there would be 2 zero points in the vector

get_points_zerotoE = ...

linspace(0,eVEnergy(position_Ef+ptsp),100);

%+++++++++++++++++++++++++++++++++++++++++++++++++++++++

%This part performes the spline interpolation. This is

%needed to calculate the derivative. The spline

%interpolation is choosen because no statistical data

%is available.

Energy_spline_vector = ...

[get_points_minusEtozero,get_points_zerotoE];

%Make a vector for the spline interpolation

position_around_Ef = position_Ef-ptsp:1:position_Ef+ptsp;

% 2*ptsp points around Ef are splined. There is no need

%for more since only the derivative at the Fermi

%Energy is of interest.

%+++++++++++++++++++++++++++++++++++++++++++++++++++++++

%perform the spline

splined_DOS = spline(eVEnergy(position_around_Ef)...

,eVDOS(position_around_Ef),Energy_spline_vector);
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splined_DOS_J = spline(Energy(position_around_Ef)...

,DOS(position_around_Ef),Energy_spline_vector);

%++++++++++++++++++++++free electron model++++++++++

% here the free electron model is calculated.

% This is possible if the Fermi energy of the free

% model is known. The file Fermief.xls contains this

% information.

DOS_f = free_electr(V_uc,const.h_quer,Fermi_Energy...

,const.m_e,Energy,char(element{i}),const.q_e);

% Here a directory is created where all the plots

% for a certain DOS are saved

cd ’E:\uni\6.semester\bak\plots’;

mkdir(filename);

cddir = [’E:\uni\6.semester\bak\plots\’,filename];

cd(cddir);

%+++++++++++++++++++++++++++++++++++++++++++++++++++

% Plot the density of states in units of eV. A line

% is also plotted at the Fermi Energy.

plot1 = figure(’name’,’DOS’); % plot

plot(eVEnergy,eVDOS,’r-’,’LineWidth’,1.5);

hold on;

plot(eVEnergy,DOS_f*const.q_e,’g’,’LineWidth’,1.5);

%’color’,[90/265,90/265,140/265]

line([0,0],[0,eVDOS(position_Ef)],’color’...

,[0.3,0.3,0.3],’Linestyle’,’--’,’linewidth’,1.5);

title([’Density of States for ’,char(element{i})]...

,’fontsize’,20);

ylabel(’DOS [eV^-1]’,’fontsize’,20);

xlabel(’Energy [eV]’,’fontsize’,20);

axistext;

if ~isnan(DOS_f)

l = legend(’DOS’,’DOS of the free electron’,...

’Fermi-energy’);
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else

l = legend(’DOS’,’Fermi-energy’);

end

set(l,’fontsize’,12);

print(plot1,’-djpeg’,[filename,’_DOS’]);

saveas(plot1,[filename,’.m’]); %save the plot

%+++++++++++++++++++++++++++++++++++++++++++++++++++

close DOS % The plot is saved an therefore closed

%+++++++++++++++++++++++++++++++++++++++++++++++++++++++

% All the derivatives are calculated

d_g = diff(splined_DOS_J); % g....D(E)

d_E = diff(Energy_spline_vector);

d_2_g = diff(diff(splined_DOS));

%d_E_2zw = d_E.^2;

%d_E_2 = d_E_2zw(1:(end-1));

%d2gtodE2 = d_2_g./d_E_2; %second derivative

dgtodE = d_g./d_E; % first derivative

dgtodE_at_Ef(1) = 1/2*(dgtodE(98)+dgtodE(99)); % mean

%d2gtodE2_at_Ef(1) = 1/2*(d2gtodE2(97)+d2gtodE2(98));

% save the element, the DOS and the derivative of the

% DOS into a array (at the E_F)

der_table_element(i,1:size(filename,2)) = filename(1:end);

der_table_DOS(i) = DOS(position_Ef);

der_table_dDOS(i) = dgtodE_at_Ef(1);

%+++++++++++++++++++++++++++++++++++++++++++++++++++++++

% this is the calculation for the chemical potential.

% This is needed for all other calculations

mu_sf = @(T) -pi^2/6.*(const.kb_J.*T).^2*...

dgtodE_at_Ef(1)/DOS(position_Ef);

T = linspace(0,500,100);

mu_calc = mu_sf(T);
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%+++++++++++++++++++++++++++++++++++++++++++++++++++++++

% plot for the chemical pontential (in SI)

plot2 = figure(’name’,’mu’);

plot(T,mu_calc,’b’,’LineWidth’,1.5);

xlabel(’Temperature / Â◦K’,’fontsize’,20);

ylabel(’chemical potential / J’,’fontsize’,20);

title(’chemical potential’,’fontsize’,20);

axistext;

mu_range = [min(mu_calc),max(mu_calc)];

axis([min(T),max(T),mu_range]);

print(plot2,’-djpeg’,[filename,’_mu’]);

close mu

% Sommerfeld expansion for the internal energy,specific

%heat,entropy and helmholz free energy.

%+++++++++++++++++++++++++++++++++++++++++++++++++++++++

% Variate Fermienergy. The reason is to look how small

% changes in the Fermi energy are affecting the different

% properties. To see how this is working in detail see

% the function SommerFeld_ucvsf_Efvar

deltapEf = 5;

DOS_Ef = [DOS(position_Ef),DOS(position_Ef+deltapEf),...

DOS(position_Ef-deltapEf)];

%+++++++++++++++++++++++++++++++++++++++++++++++++++++++

% This function calclates the rest of the properties.

% The value sf_c is the sommerfeld coefficient

[u,cv,sf_c(i,:),s,f,T] = SommerFeld_ucvsf_Efvar...

(DOS.*Energy,Energy,position_Ef,DOS_Ef,const.kb_J);

%++++++++++++++++++++++plot internal energy+++++++++++++

plot3 = figure(’Name’,’Inten’);

plot(T,u,’b’,’LineWidth’,1.5);

title(’Internal Energy’,’fontsize’,20);
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xlabel(’Temperture / Â◦K’,’fontsize’,20);

ylabel(’u / [J/m^3]’,’fontsize’,20);

axistext;

print(plot3,’-djpeg’,[filename,’_u’]);

close Inten

%++++++++++++++++++++++++plot specific heat+++++++++++++

plot4 = figure(’Name’,’Spheat’);

plot(T,cv,’b’,’LineWidth’,1.5);

title(’Specific heat’,’fontsize’,20);

xlabel(’Temperture / Â◦K’,’fontsize’,20);

ylabel(’cv / [J/(m^3 Â◦K)]’,’fontsize’,20);

axistext;

print(plot4,’-djpeg’,[filename,’_cv’]);

close Spheat

%+++++++++++++++++++++++++plot entropy++++++++++++++++++

plot5 = figure(’Name’,’Entropy’);

plot(T,s,’b’,’LineWidth’,1.5);

title(’Entropy’,’fontsize’,20);

xlabel(’Temperture / Â◦K’,’fontsize’,20);

ylabel(’ s/ [J/(m^3*Â◦K)]’,’fontsize’,20);

axistext;

print(plot5,’-djpeg’,[filename,’_s’]);

close Entropy

%++++++++++++++++plot helmholz free energy++++++++++++++

plot6 = figure(’Name’,’gfenergy’);

plot(T,f,’b’,’LineWidth’,1.5);

title(’Helmholz free energy’,’fontsize’,20);

xlabel(’Temperture / Â◦K’,’fontsize’,20);

ylabel(’f / [J/m^3]’,’fontsize’,20);

axistext;

print(plot6,’-djpeg’,[filename,’_f’]);

close gfenergy

%++++++++++++++++calculate the density of electrons+++++

Fermi_function = @(E,T) 1./(1+exp((E)./(const.kb_J.*T)));
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H = DOS.*Fermi_function(Energy,0);

n(i) = sum(DOS(1:position_Ef),2).*(Energy(2)-Energy(1));

n(i) = n(i)/1e6;

%+++++++++++++++++++++++++++++++++++++++++++++++++++++++

% all variables are deleted expect the following e.g ^B

clear(’-regexp’,’[^B,^A,^const,^der_table_element,’...

’^der_table_DOS_dDOS,^sf_c,^n,^element]*’);

end

%+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

%save the derivatives and the DOS at the Fermi Energy

txtfilename = ’table.txt’;

fin = fopen(txtfilename,’w’);

for i = 1:size(der_table_element,1);

fprintf(fin,’%s \t %1.3e \t %1.3e \t %1.3e \n’,...

char(element{i}),der_table_DOS(i),...

der_table_dDOS(i),n(i));

end

fprintf(fin,’\n\n\n’);

for i = 1:size(der_table_element,1);

fprintf(fin,’%s \t %1.3f \t %1.3f \t %1.3f \n’,...

char(der_table_element(i,1:end)),sf_c(i,1),...

sf_c(i,2),sf_c(i,3));

end

fclose(fin);

%+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

end

function axistext

set(gca,’fontsize’,20);

end

function [DOS_free] = free_electr(V_uc,hquer,...

Ef,mass_e,Energy,element,qe)

cd ’E:\uni\6.semester\bak\plots’;

%+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

% Fermi Energys of the free electron model

% (from Ashcroft & Mermin) saved in Fermiief.xls

38



[Fermifree,name] = xlsread(’Fermief.xls’);

namelog = strcmp(element,name);

if ~any(namelog)

DOS_free = nan;

return

end

Ef_free = Fermifree(namelog);

Energy_new = Energy+Ef_free*qe;

DOS_free = 2*heaviside(Energy_new).*V_uc./(4*pi.^2).*...

(2.*mass_e./hquer.^2).^(3./2).*sqrt(Energy_new);

end

A.2 function fun loaddata mod (load DOS files)

% This function loads files from the type *.DOS. These files

% generated by the program Wien2k. For other files this

% function has to be modified.

function [Energy,DOS_all,V_uc,element] = ...

fun_loaddata_mod(dir,file,bohr)

cd(dir)

[Energy,DOS_all] = textread(file,’%f %f %*f %*f %*f %*f’,...

’headerlines’,4);

[dummy,element,lattice,a_bohr,unit] = ...

textread(file,’%s %s %s %s %s’,1);

clear dummy;

a_bohr = a_bohr{1}(3:end);

a_bohr = str2num(a_bohr)*bohr;

switch char(lattice)

case {’fcc’}

V_uc = a_bohr^3/4;

case {’bcc’}

V_uc = a_bohr^3/2;

end
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A.3 function SommerFeld ucvsf Efvar (calculate prop-
erties)

function [u,cv,sommef_coeff,s,f,T] = SommerFeld_ucvsf_Efvar...

(g_u,E,position_Ef,DOS_Ef,kb)

% This function calculates the internal energy, the specific

% heat, the entropy and the helmholz free energy. The function

% needs the function for the sommerfeld expansion

% (for the internal energy. All the other values can be

% calculated from this one.), the Energy, the Density of

% States at the Fermi surface and the bolzman consant.

% To see a precise derivative of the different values see

% the documentation.

T = linspace(0,500,20);

dE = E(2)-E(1);

u_T_0 = sum(g_u(1:position_Ef),2).*dE; %This is the internal

% energy at temperature T=0Â◦K

u = u_T_0 + pi.^2./6.*(kb.*T).^2.*DOS_Ef(1);

for i=1:numel(DOS_Ef)

cv = pi.^2./3.*kb^2.*T.*DOS_Ef(i);

sommef_coeff(i) = cv(2)./T(2);

end

s = cv;

f = 2*u_T_0-u;
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