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The contact between the metal tip and n-type semiconductor contact is modeled as a Schottky
barrier and IV curves are calculated for various parameters. It is observed that when the thermionic
current dominates the tunneling current contribution (high T , large a, small U0, large ξ) the IV
curve just follows the usual diode behavior. However, when tunneling current dominates (low T ,
small a, large U0, small ξ), the reverse current starts to appear and thereby reverse the rectifying
behavior of the diode.

INTRODUCTION

FIG. 1. Four-point measurement is widely used to mea-
sure the resistivity of the sample. (Source : http://lamp.tu-
graz.ac.at/ hadley/sem/index/index.php)[1]

Nowadays, electron devices tend to have small sizes (a
few nanometers to a few microns). In order to investigate
the small size devices, in TU Graz, a scanning electron
microscope (SEM) is used with a sharp metal tip which
can move accurately within a few nanometers[1]. With
the sharp metal tip, the current and the voltage are mea-
sured. For example, the resistivity of the sample can be
measured through the four-point measurement (Fig.1).
Also, the electron beam induced current (EBIC) method
is commonly used to identify buried junctions or defects
in semiconductors, or to examine minority carrier prop-
erties (Fig.2). As mentioned above, many experiments
depend on the tip measurement, so it is important to
understand the contact between the tip and the sample.

However, little is known about the properties of the
contact between the tip and the sample although many
experiments depend on the tip measurement, so the re-
search on the properties of the contact has to be done. In
two-point measurement of the IV curve, most of the re-
sistance comes from the contact, and the IV curve shows
that the resistivity becomes smaller as the bias voltage
increases for both forward and reverse bias voltages. To

FIG. 2. EBIC method is used to study buried junctions
or defects in semiconductors. (Source : http://lamp.tu-
graz.ac.at/ hadley/sem/index/index.php)[1]

explain the shape of the IV curve, the theoretical model
is suggested in this paper and the IV characteristic is
explained with the suggested model.

In the theoretical model, Schottky contact is formed at
the contact between the metal tip and the n-type semi-
conductor sample. Assuming that the charge density is
constant through the depletion layer, the potential bar-
rier can be calculated, which shows a V ∼ r−1 behavior.
Then, the Schrodinger equation is solved with the calcu-
lated potential function. In this step, the transmission
coefficient is obtained. Finally, the current density is cal-
culated using the calculated transmission coefficient and
the Fermi-Dirac distribution function.

Meanwhile, to be sure about the calculation, the cur-
rent density was calculated for the square barrier poten-
tial, which agrees well with the previous study[2].

For the spherical shape Schottky barrier, the diode-like
behavior is observed when the thermionic current dom-
inates the tunneling current, which can be understood
in general terms like in many other semiconductor text-
books. However, when the tunneling current is a major
source of the current, it is observed that the reverse cur-
rent starts to appear, so the rectifying behavior of the
diode is reversed.
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THEORY AND MODEL

A. Modeling of the Contact : Spherical Shape
Schottky Barrier

FIG. 3. (a) Geometry of the contact between the tip and the
sample. (b) The model is simplified to have a spherical shape
contact.

In the theoretical model, there is a metal tip, and the
sample is assumed to be a n-type semiconductor. The
analysis of a p-type semiconductor is almost the same as
the n-type one. The usual geometry of the tip measure-
ment is like Fig.3. The tip and the n-type semiconduc-
tor sample become contact each other, and the Schottky
contact is formed if the Fermi energy of the n-type semi-
conductor is higher than that of metal tip. The electron
moves to the metal tip side, so the positively charged de-
pletion region is formed around the tip. In the model, I
assumed for the mathematical simplicity that the shape
of the contact is spherical shape with a radius a.

In Fig.4, the energy level diagram of Schottky contact
is illustrated[3]. Before the contact is formed, the Fermi
energy of the n-type semiconductor is higher than that
of the metal tip. When the two become contact each
other, small amount of electron moves to the metal side,
so the Fermi energies of both sides become equal and
the Schottky barrier is formed. When the bias voltage is
applied, the difference of the Fermi energies becomes eV .

B. Potential Barrier Calculation through the
Poisson Equation

For the simplicity, I assumed that the charge density
at the depletion layer is constant (ρ = eNd), which is
called the depletion approximation[4]. Then, the Poisson
equation

∇2V (~r) = −ρ
ε

(1)

is to be solved. Here, the electric potential is radially
symmetric (V (~r) = V (r)), so the Poisson equation be-
comes

1

r2
d

dr

(
r2
d

dr
V (r)

)
= −eNd

ε
. (2)

FIG. 4. Before the contact is formed, Fermi energy of
the n-type semiconductor is higher than that of metal
tip. When the two become contact each other, small
amount of electron moves to the metal side, so the Fermi
energies of both sides become equal and the Schottky
barrier is formed. When the bias voltage is applied,
the difference of Fermi energies becomes eV . (Source :
http://web.tiscali.it/decartes/phd html/node3.html)[3]

If we multiply r2 and integrate,

r2
d

dr
V (r) = −eNdr

3

3ε
+ C1 (3)

and, if we divide by r2 and integrate, we arrive at the
general form of the potential.

V (r) = −eNdr
2

6ε
− C1

r
+ C2 (4)

The coefficient C1 can be obtained by using the fact
that at the end of the depletion layer(r = rd) the electric
field vanishes,

E(rd) = − d

drd
V (rd) = −eNdrd

3ε
+
C1

rd2
(5)

so, C1 = eNdr
3
d/3ε. The coefficient C2 can be ob-

tained by setting the ground potential as V (rd) = 0, so
C2 = 3Ndr

2
d/2ε. Therefore, the electric potential of the

spherical Schottky contact is

V (r) =


Vbi (r < a)
eNd

6ε

(
3rd

2 − r2 − 2rd
3

r

)
(a ≤ r ≤ rd)

0 (r ≥ rd)
(6)

with the constraint V (a) = Vs + Vbi, where Vs is the
intrinsic potential drop at the contact, and Vbi is the
bias voltage applied to the metal side.
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FIG. 5. Potential energy (U = −eV ) profile for various Vbi

values. When negative(positive) voltage is applied the bar-
rier becomes higher(lower) and thicker(thinner). The intrinsic
voltage drop (Vs) is set to −1 V .

FIG. 6. As the metal side becomes more negatively biased the
depletion layer radius (rd) increases. The intrinsic potential
drop at the barrier (Vs) is set to be −1 V .

At Fig.6, potential energy profile for various bias volt-
age (Vbi) is shown. When negative voltage is applied the
barrier becomes higher and thicker, and vice versa. It
was assumed that Nd = 1015 cm−3, and a = 1nm. Also,
at the Fig.5, the radius of the depletion layer (rd) is cal-
culated for various bias voltages. It can be seen that
as the bias voltage becomes negative the depletion layer
thickness increases.

C. Schrodinger Equation and Transmission
Probability

In general, the transmission probability can be calcu-
lated by solving time-independent Schrodinger equation.

− h̄2

2m∗
d2

dx2
ψE(x) + U(x)ψE(x) = EψE(x) (7)

FIG. 7. Schematic diagram of the potential barrier and the
tunneling phenomenon. When an incident wave (AIe

iklx) ap-
proaches to the barrier, a part is reflected back (ARe

−iklx)
and the other part transmits through the barrier (AT e

ikrx).

where m∗ is an effective mass of the electron.
Suppose the system where the potential is constant

at a region x < 0 and x > a and in between there’s a
potential barrier. Here, Ul(Ur) is a constant potential on
left(right) side.

U(x) =


Ul (x < 0)

Ubarrier(x) (0 < x < a)

Ur (x > a)

(8)

It is known that the solution under the constant po-
tential is a plane wave. So we can write the solution as
a combination of the incident wave, the reflected wave,
and the transmitted wave

ψE(r) =

{
AI(E)eiklx +AR(E)e−iklx (x < 0)

AT (E)eikrx (x > a)
(9)

where

kl =

√
2m∗(E − Ul)

h̄
(10)

and

kr =

√
2m∗(E − Ur)

h̄
, (11)

which are the wave numbers on the left(right) side. A
schematic diagram is shown in Fig.(7).

With the initial condition{
ψ(x = a) = eikrx(
∂ψ
∂x

)
x=a

= ikre
ikrx

(12)

we can integrate the Eq.(7) numerically and get ψ and
dψ/dx at the point x = 0. Here we can impose the
condition AT = 1 since only the relative values of co-
efficients are physically meaningful. The coefficients are
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FIG. 8. The periodic boundary condition assumes that the
wave function is the same in every period L(� a).

just needed to meet the constraint, |AI |2 = |AR|2+|AT |2.
Therefore, we can calculate AI and AT as follows.AI(E) = 1

2ψ(0) + 1
2ik

(
∂ψ
∂x

)
x=0

AT (E) = 1
2ψ(0)− 1

2ik

(
∂ψ
∂x

)
x=0

(13)

Then, we can calculate the transmission probability as

T (E) = 1−
∣∣∣∣AR(E)

AI(E)

∣∣∣∣2 . (14)

D. Current Density

Current density can be calculated from the tunneling
probability and the Fermi-Dirac distribution[4]. For the
convenience in counting the number of states, periodic
boundary condition is imposed. The boundary condition
assumes that the wave function is same in every space
period L, which means that the wave function has a pe-
riod L. The period L is assumed to be much larger than
the system itself (L� a).

Let’s consider the system in Fig.8. The incident wave
coming from the left side (AIe

ikx) is reflected (ARe
−ikx)

and transmitted (AT e
ikx) at the potential barrier. If we

set AI = 1, the normalized wave function is given by

ψk(r) =

{
1√
L

(
eikx +AR(k)e−ikx

)
(left side)

1√
L
AT (k)eikx (right side)

. (15)

so when the boundary condition (ψk(x + L) = ψk(x))
is imposed, the possible k values form a set of discrete
numbers, and the unit length of k-space becomes 2π/L

k =
2π

L
m, m ∈ Z (16)

where Z is the set of integers.
The current density of the quantum state with the

wave number k is the electron charge (−e) times the

probability current.

Jk(L→ R) = − eh̄

2m∗i

[
ψ∗k
∂ψk
∂x
− ψk

∂ψ∗k
∂x

]
= (−e)T (k)

L

h̄k

m
(17)

The overall current density of the left-incoming case is
sum over the all possible k values times Fermi function
factor.

J(L→ R) = 2
∑
k

(−e)T (k)

L

h̄k

m
fL(k) (1− fR(k)) (18)

where the first Fermi function factor (fL(k)) is the prob-
ability that the state k is occupied on the left side of the
barrier, and the second factor (1 − fR(k)) is the proba-
bility that the state k is empty on the right side of the
barrier. Meanwhile, the factor 2 in the front comes from
the spin degree of freedom for each k values. If we change
it into the integral representation, it becomes

J(L→ R) =
2

(2π/L)

∫
k

dk(−e)T (k)

L

h̄k

m
fL(k) (1− fR(k)) .

(19)
The last step is to change the integral variable into the
energy, E = h̄k2/2m, and the integral becomes

J(L→ R) = −4e

h

∫
E

T (E)fL(E)(1− fR(E))dE. (20)

Similarily, the current density which flows from the right
side to the left side is

J(R→ L) = −4e

h

∫
E

T (E)fR(E)(1− fL(E))dE. (21)

Therefore the total current is the difference of the two
contributions.

Jtotal =
4e

h

∫
E

T (E)(fR(E)− fL(E))dE. (22)

EXPERIMENT AND RESULT

Experimental result was referred from Alexander Schn-
abel and Stephan Stonica’s report of the class, experi-
mental laboratory exercise, in TU Graz[4].

The setup for the experiment is shown in Fig.9. A
part of the n-doped silicon wafer is placed between the
two copper plates. The sample was proton-doped silicon
wafer produced by Infineonn named P570 530. Four tips
driven by the macro manipulator are placed on the sili-
con. All the tips and copper plates are enumerated from
1 to 6. The tip 1,2, and 3 are composed of tungsten, and
4 is copper-beryllium. The copper plates are enumerated
as 5 and 6.

A series of two-point measurements between the tips
or between the tip and the copper plates has been carried
out, and the IV curve is shown in Fig.10. It is observed
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FIG. 9. Setup for the measurement. 1-3 Tungsten Tips, 4
Copper-Beryllium tip, 5,6 Copper-plates.

FIG. 10. The IV curves for the tip-semiconductor con-
tact.(blue : tip-tip, green : tip1-cu, red : tip2-cu, turquoise :
red and green added) On the left side one tungsten and one
copper-beryllium tip is used, while two tungsten tips were
used in the right.

from the IV curve that the resistivity becomes smaller as
the magnitude of the bias voltage increases. In Fig.10-
(a), the IV curve of 34 is compared with the sum of the
two curves, 35+45, which gives almost the same result.
This suggests that the most of the resistivity comes from
the tip-semiconductor contact, and that the resistivity
which comes from the contact between the copper plate
and the semiconductor is small. The same thing can also
be seen in Fig.10-(b).

Therefore, it is concluded that the resistivity that
comes from the tip-semiconductor contact shows nonlin-
ear behavior, where the resistivity becomes smaller as
the magnitude of the bias voltage increases. In the next
section, the IV curve at the tip-semiconductor contact
is numerically calculated, and this behavior is explained
within the theoretical model.

NUMERICAL CALCULATION RESULT

Using the theory and the model discussed before, the
IV curves are calculated for both square and Schottky
potential barrier.

FIG. 11. Energy band diagram of the square potential barrier
when (a) Vbi > 0 and (b) Vbi < 0.

A. Square Barrier

The parameters for the calculations are defined as be-
low (See Fig.11) :

Barrier Height U0

Barrier Width a
Fermi Energy on the Left/Right EF,l/EF,r
Conduction Band Bottom on the Left/Right EC,l/EC,r
EF − EC ξl/ξr
Bias Voltage Vbi

As the two different materials become contact each
other, the Fermi energies of two different materials be-
come the same. Then, if a bias voltage is applied, the
Fermi energies becomes different as Eq.(25), so electrons
can flow.

EF,r − EF,l = −eVbi (23)

Moreover, the wave vectors on the left and right sides are
given by

kl =

√
2mE

h̄2
, (24)

and

kr =

√
2m(E + ξl − ξr + eVbi)

h̄2
, (25)

where E is the energy of the electron which is set to be
zero at the bottom of the conduction band on the right
side.

The first thing to note is the dependence of the bar-
rier thickness, a. In Fig.12, IV curves were calculated for
the barrier thicknesses 10−11 m, 10−10 m, 10−9 m, and
10−8 m. The other conditions were set to be the same
(U0 = 2 eV , ξl = ξr = 2 eV , T = 300 K). It can be
seen that as the barrier thickness becomes smaller it be-
comes to follow the Ohmic behavior while the curves have
the bigger curvature when the barrier becomes thick.
When the barrier is thick it’s hard for electrons to pene-
trate through the tunneling, so the electrons can tunnel
through the barrier only when the high enough bias volt-
age is applied .
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FIG. 12. IV curves for various values of barrier thickness. As
the barrier thickness become smaller it becomes to follow the
Ohmic behavior while the curves have bigger curvature when
the barrier is thick.

FIG. 13. Temperature dependence of the IV curves. In ex-
tremely high temperature the Ohmic behavior is observed.
While in low temperature regime, the curvatures of the curve
can be seen, especially for the T = 3000 K case, which comes
from the quantum interference effect.

In Fig.13, a similar trend can also be observed in
the calculation for various temperatures (30 K, 300 K,
3000 K, and 30000 K) while all the other conditions
were set to be the same (U0 = 2 eV , ξl = ξr = 2 eV ,
a = 1 nm). In extremely high temperature, the IV curve
just becomes linear, where the contribution to the current
comes mostly from the thermionic emission. While in a
low temperature region, like 30 K and 300 K, most of the
current comes from the tunneling electrons whose energy
is low. An interesting behavior is observed at 3000 K,
where the curvature can be seen easily. In this temper-
ature region there are enough electrons whose energy is
almost at the tip of the barrier, so they can tunnel easily.

FIG. 14. IV curves for the different U0 values. It’s Ohmic
when the height is small and come to have a curvature as the
height becomes bigger. Especially for the U0 = 0 case, the
funny shape of the curve can be observed since the energy of
the electrons is almost at the edge of the barrier.

The electrons in this energy region show the quantum in-
terference effect where incoming wave and reflected wave
interfere each other, thus showing a funny shape of the
IV curve.

The next thing to note is the barrier height dependence
of the IV curves. In Fig.14, IV curves for various barrier
height are shown. Here also, the other conditions are
set to be the same for each calculation (T = 300 K, ξl =
ξr = 2 eV , a = 1 nm). The first case, U0 = −2 eV means
the free space, no barrier case. When the barrier height
is low the IV curves are linear. As the barrier height
increases, the IV curves come to have a curvature, and
an interesting IV curve can be observed for the U0 = 0
case where the electrons have an energy that is almost
equal to the edge of the barrier, so the interference occurs.

Finally, the IV curves for various ξr values (0-4 eV)
are shown in Fig.15. When ξr = 0 the current density
becomes zero for the negative bias voltage since there is
no electron to flow. As ξr increase, the IV curves become
more symmetric. However, it can be observed that the
shape of the IV curves does not change anymore when
ξr is bigger than 3 eV because the added electrons have
too low energy to move to the other side. Meanwhile, the
other conditions are set to be the same for each calcula-
tion (T = 300 K, ξl = 2 eV , a = 1 nm, U0 = 2 eV ).



7

FIG. 15. IV curves for different ξr values(0-4 eV). When
ξr = 0 the current density becomes zero for the negative bias
voltage since there is no electron to flow, and as ξr increase
IV curves become more symmetric.

FIG. 16. Definition of parameters for the calculation of the
Schottky barrier

B. Spherical Schottky Barrier

The parameters for the calculations are defined as be-
low (See Fig.16) :

Barrier Height U0

Barrier Width a
Fermi Energy on the Left/Right EF,l/EF,r
Conduction Band Bottom on the Left/Right EC,l/EC,r
EF − EC ξl/ξr
Bias Voltage Vbi

The first thing to note is that the dependence of the
diode size, a (Should not be confused with the barrier
thickness a in the previous section. In spherical Schottky
barrier, the thickness of barrier is rd−a.). In Fig.17, the
IV curves were calculated for the diode sizes 10−11 m,
10−10 m, 10−9 m, and 10−8 m. The other conditions
were set to be the same (U0 = 6 eV , ξl = ξr = 2 eV ,
T = 300 K). It can be seen that as the diode size
becomes smaller it comes to follow the Ohmic behav-
ior while the curves have the bigger curvature when the
barrier is thick. When the barrier is thick it is hard for
electrons to penetrate by the tunneling, so electrons can
tunnel through the barrier only when the high enough
bias voltage is applied .

FIG. 17. IV curves for various values of barrier thickness.
As the barrier thickness become smaller it becomes to follow
Ohmic behavior while the curves have the more curvature
when the barrier was thick.

The next thing to note is the temperature dependence
of the IV curves (Fig.18). At low temperature regime the
curvature of the curve is obvious while as the temperature
becomes high it becomes linear. Here, the other condi-
tions were set to be the same (U0 = 6 eV , ξl = ξr = 2 eV ,
a = 1 nm). At low temperature, the electrons near
the Fermi surface satisfy the interference condition, so
the curvature in IV curves appears. On the other hand,
when the temperature is high enough, most of the cur-
rent comes from the thermionic emission. From this re-
sult, it can be induced that the tunneling contribution
to the current is opposite to the usual diode behavior of
Schottky barrier where only the thermionic emission is
considered.

The interesting trend can be observed when we watch
the barrier height dependence of the IV curves (Fig.19,
20). When the barrier height is low (U0 = 1 eV ) the IV
curve is Ohmic, which is trivial because most of the cur-
rent comes from the thermionic emission. As the barrier
becomes higher up to 4 eV , the IV curves come to behave
like a diode. A diode-like behavior of IV curve is easily
explained as most semiconductor textbooks treat[4]. In
Fig.4-(C) the electron has to overcome the barrier height
eφbn, while in Fig.4-(D) the electron only need to have
a energy e(φbi − V ), where only a thermionic contribu-
tion is considered. However, in the numerical calculation
I included both of tunneling and thermionic emission.
As the barrier height increases more, the reverse current
starts to increase, and at U0 = 8 eV the reverse current
exceeds the forward current, thus reversing the rectifying
behavior of the diode. In this regime, only the tunnel-
ing current is important and the thermionic contribution
is exteremely small. Meanwhile, all the other conditions
were set to be the same for each calculation (T = 300 K,
ξl = ξr = 2 eV , a = 1 nm).
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FIG. 18. The temperature dependence of the IV curves.
At low temperature the tunneling current dominates the
thermionic current, thereby the reverse current is observed.
As the temperature becomes high the diode behavior starts
to appear, and in extremely high temperature it eventually
becomes Ohmic.

FIG. 19. IV curves for the various barrier height values (small
U0 regime). At U0 = 0, it’s Ohmic since almost all of the
current comes from the thermionic emission. As the barrier
height becomes larger, the diode-behavior is observed, which
can be explained in the general terms like many other semi-
conductor textbooks.

Finally, another interesting behavior is shown in IV
curves for the different ξr values (Fig.21). The other con-
ditions were set to be the same (T = 300 K, ξl = 2 eV ,
a = 1 nm, U0 = 6 eV ). At ξr = 1 eV , rectifying behavior
of the diode is reversed. The region is the same as the dis-
cussion before. When the tunneling contribution to the

FIG. 20. The IV curves for the various barrie height values
(large U0 regime). As the barrier height becomes larger, the
reverse current appears, thereby reversing the rectifying be-
havior of the Schottky diode.

FIG. 21. IV curves for the various ξr values. At ξr = 1 eV ,
IV curve is is opposite to the usual Schottky diode. In this
regime the tunneling current dominates the thermionic cur-
rent. As ξr increases, the thermionic emission current starts
to contribute, thereby the diode-behavior starts to appear.

current dominates the thermionic contribution, the recti-
fying behavior is reversed. As the ξr value increases the
thermionic current starts to contribute, thus the usual
diode behavior of the Schottky barrier is observed.
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CONCLUSION

In this paper, the contact between the metal tip and
n-type semiconductor contact is modeled as a Schottky
contact barrier. Using the depletion approximation, the
Poisson equation was solved to get the shape of the poten-
tial barrier. Then, by plugging in the potential barrier
calculated before, the Schrodinger equation was solved
and the transmission coefficient was calculated. Finally,
combined with the Fermi-Dirac function, the current den-
sity was calculated.

It was observed that when thermionic current domi-
nates the tunneling current contribution (high T , large
a, small U0, large ξ) the IV curve just follows the usual
diode behavior, which can be explained like many other
semiconductor textbooks. However, when tunneling cur-
rent dominates (low T , small a, large U0, small ξ), the
reverse current starts to appear and thereby reverse the
rectifying behavior of the diode.

From the experimental result, it is suggested that the
current at the tip is composed of both tunneling and
thermionic current. Since the two contributions are
mixed, it would show the half-like diode IV curve.
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APPENDIX

Here, the matlab source code for the numerical calcu-
lations is included.

A. Square Barrier

There are four function files named schrodinger, tun-
neling, fermi, and current. All these files should be in
the same folder.

Function file for solving the Schrodinger equation

function dy=schrodinger(t,y)

dy=zeros(2,1);

global Ex a Vx V0 xsir

m=9.10938188*10^(-31);

hbar=(6.626068*10^(-34))/(2*pi);

e=1.60217646*10^(-19);

dy(1)=y(2);

dy(2)=y(1)*2*m

*((e*V0+xsir) - e*Vx*(1-t/a) - Ex)/(hbar^2);

Fermi function file

function [ f ] = fermi(E)

global Temp kB

f=1/( exp(E/(kB*Temp)) + 1);

end

Function file that gives the current density for the energy
level E - E+dE

function [dJ]=tunneling(V)

global e hbar E kB Temp Ex Vx V0 Vx a xsil xsir

e=1.60217646*10^(-19);

m=9.10938188*10^(-31);

h=6.626068*10^(-34);

hbar=(6.626068*10^(-34))/(2*pi);

kB=1.3806503*10^(-23);

a=1*10^(-11); %barrier depth

V0=3;% barrier hight

xsil=2*e; % filled electron in LHS

xsir=2*e; % filled electron in RHS

mul=xsir-e*V;

mur=xsir;
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Temp=300; %device temperature

Vx=V;

VR=V;

N=100; %energy step

%ground energy

ger=0;

gel=-(xsil-xsir)-e*Vx;

if (gel<0)

E=linspace(ger,max(mul,mur)+10*kB*Temp,N);

dE=E(2)-E(1);

else

E=linspace(gel,max(mul,mur)+10*kB*Temp,N);

dE=E(2)-E(1);

end

kr=sqrt(2*m*E/(hbar)^2);

kl=sqrt(2*m*(E+xsil-xsir+e*Vx)/(hbar)^2);

Ai=zeros(N,1);

Ar=zeros(N,1);

T=zeros(N,1);

dJ=zeros(N,1);

for j=1:N

Ex=E(j);

[x psi]=ode45(’schrodinger’, [a 0]

,[exp(1i*kr(j)*a) 1i*kr(j)*exp(1i*kr(j)*a)]);

nn=size(x);

n=nn(1,1);

Ai(j)=(psi(n,1)+psi(n,2)/(1i*kl(j)))/2;

Ar(j)=(psi(n,1)-psi(n,2)/(1i*kl(j)))/2;

T(j)=1-(abs(Ar(j)/Ai(j)))^2;

T1=T(j);

dJ(j)=-(4*e/h)*T1*(fermi(Ex-mul)-fermi(Ex-mur))*dE;

end

end

Function File that gives the IV curve

function [V J]=current(Vspan,Vstep)

V=transpose(linspace(Vspan(1),Vspan(2), Vstep));

J=zeros(Vstep,1);

for j=1:1:Vstep

J(j)=nansum(tunneling(V(j)));

end

figure

plot(V,J,’-o’);

end

Schottky Barrier

There are four function files named schrodinger1, tun-
neling1, fermi1, and current1. All these files should be
in the same folder.

Function file for solving the Schrodinger equation

function dy=schrodinger1(t,y)

dy=zeros(2,1);

global Ex rd

m=9.10938188*10^(-31);

hbar=(6.626068*10^(-34))/(2*pi);

e=1.60217646*10^(-19);

Nd=10^(21);

ep0=8.85418782*10^(-12);

epr=1;

ep=ep0*epr;

k=(e*Nd)/(6*ep);

dy(1)=y(2);

dy(2)=y(1)*2*m

*(-e*k*(3*(rd^2)-(t^2)-2*(rd^3)/t)-Ex)/(hbar^2);

Fermi function file

function [ f ] = fermi1(E)

global Temp kB

f=1/( exp(E/(kB*Temp)) + 1);

end

Function file that gives the current density for the energy
level E - E+dE

function [dJ]=tunneling1(V)

global kB Temp Ex Vx a rd

% fixed constants

e=1.60217646*10^(-19);

m=9.10938188*10^(-31);

hbar=(6.626068*10^(-34))/(2*pi);

h=6.626068*10^(-34);

kB=1.3806503*10^(-23);

ep0=8.85418782*10^(-12);

epr=1;

ep=ep0*epr;

Nd=10^(21);
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k=(e*Nd)/(6*ep);

xsil=2*e; % chemical potential at LHS

xsir=2*e; % chemical potential at RHS

mul=xsir-e*V;

mur=xsir;

Temp=300; %device temperature

a=1*10^(-8);

Vs=-6;

Vx=V;

VR=V;

N=100; %energy step

rds=roots([2,-3*a,0,(a^3)+((Vs+Vx)*a/k)]);

rd=rds(1);

%ground energy

ger=0;

gel=-(xsil-xsir)-e*Vx;

if (gel<0)

E=linspace(ger,max(mul,mur)+10*kB*Temp,N);

dE=E(2)-E(1);

else

E=linspace(gel,max(mul,mur)+10*kB*Temp,N);

dE=E(2)-E(1);

end

kr=sqrt(2*m*E/(hbar)^2);

kl=sqrt(2*m*(E+xsil-xsir+e*Vx)/(hbar)^2);

Ai=zeros(N,1);

Ar=zeros(N,1);

T=zeros(N,1);

dJ=zeros(N,1);

for j=1:N

Ex=E(j);

[x psi]=ode15s(’schrodinger1’, [10*a a]

,[exp(1i*kr(j)*10*a) 1i*kr(j)*exp(1i*kr(j)*10*a)]);

nn=size(x);

n=nn(1,1);

Ai(j)=(psi(n,1)+psi(n,2)/(1i*kl(j)))/2;

Ar(j)=(psi(n,1)-psi(n,2)/(1i*kl(j)))/2;

T(j)=1-(abs(Ar(j)/Ai(j)))^2;

T1=T(j);

dJ(j)=-(4*e/h)*T1*(fermi1(Ex-mul)-fermi1(Ex-mur))*dE;

end

end

Function File that gives the IV curve

function [V J]=current1(Vspan,Vstep)

V=transpose(linspace(Vspan(1),Vspan(2), Vstep));

J=zeros(Vstep,1);

for j=1:1:Vstep

J(j)=nansum(tunneling1(V(j)));

end

end


