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1 Introduction

This thesis will mathematically describe a few systems of electrons confined to
a nanoscaled geometry.

It starts with a general discussion of finding the solution, the dispersion relation
and density of states for electrons in 0, 1, 2 and 3 dimensional quatum systems
in chapter 2.

Afterwards electrons confined to a square, the surface of a torus and the surface
of a sphere will be described in chapters 3, 4, 5 and 6.

Programs to study the properties of those systems in Matlab are added in the
appendix. There’s a description at the end of the chapters.

The descriptions find application in theory and praxis.

For example are electrons on the surface of a torus a model crop circles.
Those are nanotubes, that form stable rings at certain radii.

Electrons confined to a rectangle or a square describe electrons in transistor
devices.

Electrons in a quantum dot are described by electrons confined to a 3-dimensional
square well.

There’s research on spherical gold shells with a silicon core. Electromagnetic
waves cause the electrons in the shell to oscillate. The resonance frequencies
reach from the blue end of the visible spectrum of light to the near infrared,
depending on the ratio of the radii of core and shell.

Electrons in nanotubes are used as sensors or electrodes for example.
There’s research on nanotubes that detect visible light. They could be used
in solar cells, to make them more efficient concerning light absorption.Other
nanotubes are selective concerning light absorption.

Another application could be in artificial retinas or tiny cameras, that work
in very low light (article [13]).

Other nanotubes are selective concerning light absorption.
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2 Structure of calculation

2.1 Defining the dimension of the problem

0 dimensional problem: the electrons are confined to a 3-dimensional quan-
tum well (small cube or quantum dot). It’s motion is quantized in all directions.

1 dimensional problem: electrons confined to a quatum wire (f.e. poly-
mers). The electrons are quasi free in one direction.

2 dimensional problem: electrons confined to a plane (f.e. in a transis-
tor device).

3 dimensional problem: electrons in a bulk.

2.2 Finding the Solutions

In all the problems the electrons are considered as non interacting and free. This
means they’ve zero potential inside the confinement area and infinite potential
anywhere else.

The equation that has to be solved is the stationary and free Schrödinger equa-
tion. This type of differential equation is called the Helmholtz equation, for
which the solutions are known for several geometries:

−~2

2m
∆ψ = Eψ (1)

ψ....wave function
E....energy eigenvalues
m...electron mass
h....Planck’s constant

2.3 Dispersion relation (DISP)

The Dispersion relation describes the dependence of the energy on momentum

E(p)

and because of the de Broglie relation

p = ~k (2)
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also the dependence of the energy on the wave vector k

E(k).

It’s found by inserting the solution ψ into the Helmholtz equation.

For free electrons the solutions are

ψ = C · eikx, (3)

where the wave vector k is not specified yet.

The energy is the expectation value of the Hamilton operator:

E = 〈ψ|Ĥ|ψ〉 = 〈ψ| P̂
2

2m
|ψ〉 =

1
2m
〈ψ|

3∑
i=1

P̂ 2
i |ψ〉

(∗)
=

1
2m

3∑
i=1

∫ Li

0

ψ(xi) · (−~2)
δ

δxi
ψ(xi)dxi

=
1

2m

3∑
i=1

~2k2
i

(4)

(*)....insert Identity operator

E(k) = ~2

2m · |k|
2

(5)

The energy can also be written as a function of a quatum number, if k is
specified.
k is specified by the dimension and the geometry (boundary conditions) of the
problem. Hence the DISP is characteristic for the geometry of the problem.
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• For instance for a volume with sides L1, L2, L3: The solution has to vanish
at the boundary, which causes nodes in the wave function (solutions are
sinusoidal ). The allowed k values are

|k| = k =
3∑
i=1

k2
i ; ki = ni·π

Li
;ni = 1, 2, 3...

(6)

ni...quantum number
ni = 0 is not allowed, because in this case the wave function would vanish
independently from x.

• In case of periodic boundary conditions, the solutions are moving waves
(eikx), there are no nodes.
The allowed k values are

|k| = k =
3∑
i=1

k2
i ; ki = ±ni·2π

Li
;ni = 0, 1, 2, 3...

(7)

The energy can be expressed in terms of the quantum numbers n1, n2 and n3:

En =
~2

2m
·

3∑
i=1

(
ni · 2π
Li

)2

(8)

Li influences the spacing of the k values and therefor also the spacing of the
energy levels.
Small lengths cause large spacing and a discrete DISP.
For large Li the DISP can be described by a continuous function.

From eq.(5) and(6) follows, that the DISP shows the E(k) dependence, where k
represents a triple of n values implicitly

E(k) = E(n1, n2, n3). (9)

The E(ni) dependences can be shown separately.
Then the influence of the different lengths Li, and in some cases energy degen-
eracies, become obvious.
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In one dimension, the energy depends on the square of n1 over L. The depen-
dence is parabolic. It’s shown in fig.(1). The energy dependence of the absolute
value of k is parabolic as well: E(|k|) looks similar to E(n1).

In two dimensions, the energy dependence on the two quantum numbers n1, n2

can be represented as in fig.(2). The degeneracy of the energy with respect to
the number of n-tuples (n1, n2), that belong to the same absolute value of k,
can be seen as well.
It’s the number of parabolas x, that reach the x- times degenerate energy.

Figure 1: Dispersion relation of a 1-dimensional system with length L = 1 nm.
The energy depends on the square of quantum number n1 divided by L. The
spacing of the energy states is defined by the length L.

2.4 Denstity of states (DOS)

The DOS gives the change in the number of possible energy states per energy
range.

∆N
∆E

L→∞ dN

dE

N.....total number of states N, that exist for a given Fermi energy
E...energy eigenvalues

For the calculation of the DOS one needs to know N and the dispersion relation.
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Figure 2: Dispersion relation of a 2-dimensional system with lengths
L1 = L2 = 1 nm. The values of one parabola are the eigenstates of the energy
depending on quantum number n1 while n2 = const.. The spacing of the energy
states of each parabola is defined by L1. The spacing between the bottoms of
the parabolas is defined by L2. The degeneracy of one energy state is given by
the number of parabolas, that include this energy.

Descrete DOS:

If the spacing between the energy eigenvalues is large, the DOS is given by

∆N
∆E

=
N(E2)−N(E1)

E2− E1
. (10)

Actually ∆N is the degeneracy of E2 (except the spin degeneracy, because not
only E2, but all eigenstates are spin degenerate).

In one dimension this calculation is done very fast. In two or three dimensions
it very quickly becomes computationally intensive, because all the n-tuples that
satisfy eq.(8) for the concerned energy, would have to be found and divided by
the propper ∆E.

Continuous DOS:

It’s easier to consider the DOS to be quasi continuous. If the spacing between
the energy states is about kBT , the DOS can be described by the continuous
function
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dN

dE
(11)

if the system is large in the dimension the electrons are considered to be quasi
free.

In this case N can be calculated with the Fermi sphere.
The Fermi sphere is a model for the Fermi surface (k-space), which fits well, if
the period L (real space) becomes large.
Large L causes small spacing of k. Hence the single state volumes are small
enough to be almost completely adjusted into the Fermi sphere.

2
∑
l

Θ(E − El) n=0

N(E) = 2
∑
l

Θ(E − El)
Vk
Ωk

+N∗ n=1,2

2
Vk
Ωk

+N∗ n=3

(12)

n......dimension of the system
Θ......................Heavyside stepfunction
k....wave vector
Vk....Volume of the Fermi sphere (in k-space)
Ωk....Volume, a single state takes in k-space
N∗....extra states

The factor of two accounts for the spin degeneracy of a state.
N∗ takes extra states in account.

Using the dispersion relation, the fermivector in the equation above can be ex-
pressed in terms of energy.
The DOS is given by the derivation of N(E) with respect to E.

Notice, that the calculation of N is valid for both specifications of k (eq.(6) and
(7)), even though there’s a factor of two in k2 and k2 can be zero and negative.

k1 =
n1 · π
L1

n1 = 1, 2, 3...

k2 = ±n2 · 2π
L2

n2 = 0, 1, 2, 3...

(13)

8



For a given Fermi energy E

E = ~2

2m ·
n1·π
L = ~2

2m ·
n2·2π
L

(14)

follows
n2 =

n1

2

With eq.(12) follows

N1 = 2 ·
n1

π
L
π
L

= 2n1 = 4n2 = 2 ·
n2

2π
L

2π
L

= N2

(15)

The two states at k = 0 for N2 are not necessary to mention, because they don’t
influence the DOS, which is the derivation of N.

2.4.1 0-dimensional DOS

Since the energy levels of systems, that are quantized in all three dimensions are

discrete, the DOS is a couple of delta functions with peaks at discrete energies.

The height of the peak is the total number of degeneracies of the energy level.

The spin degeneracy causes a factor of two.

D0(E) = 2 · ni ·
∑

l δ(E − El)

(16)

δ....Dirac delta function
El....discrete energies En1,n2,n3

ni.....degeneracy of the energy El besides the spin degeneracy

Exemplary values for ni are listed in table (2.4.1).

2.4.2 1-dimensional DOS

If a quantum dot is enlarged in one dimension to the length L the system be-
comes 1-dimensional.
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Table 1: Degeneracy of the first six eigenstates of a 0-dimensional system.

Degenerate states ni
(1,1,1) 1

(1,1,2), (1,2,1), (2,1,1) 3
(1,2,2), (2,1,2), (2,2,1) 3
(1,1,3), (1,3,1), (3,1,1) 3

(2,2,2) 1
(3,2,1), (3,1,2), (2,3,1), (2,1,3), (1,3,2), (1,2,3) 6

Figure 3: Exemplary DOS of a 0-dimensional system. Single peaks with defined
height at the allowed energies. The lowest energy is E11 > 0.
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The 1-d DOS is given by:

D1(E) = 2 ·
√

2mL
~π ·

∑
l

Θ(E−El)√
E−El

(17)

L....length of the 1-dimensional system
Θ...Heaviside step function
El....discrete energies En2,n3

Derivation:

In k space the possible states for an energy E(k) lie in the interval [−k,+k].

From equations (7) and (12) follows

N = 2 ·
2 · n·2πL

2π
L

+ 2 = 4n+ 2 (18)

The plus 2 is for the two electron states at k = 0.

4n + 2, n = 0, 1, 2, 3..., is known as Hückl’s rule.
In organic chemistry ring molecules with such a number of π electrons have aro-
matic properties. It also gives the number of possible energy states for electrons
in ring systems, like in quantum wires with periodic boundary conditions.

From equation (18) follows

∆N = 4..

And from equation (5) follows

∆E =
2π2~2

m

(
2n+ 1
L2

)
. (19)

Using the dispersion relation eq.(8) the 1-dimensional DOS in is given by:

∆N
∆E

=
√

2mL
~π
√
E + ~2π2√

2mL

(20)
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If L becomes larger and the electrons are regarded as quasi free, the limit L −→
∞ can be taken and eq.(20) becomes

D1(E) =
√

2mL
~π
√
E
. (21)

which is the derivation of

N = 4n+ 2 (∗)
=

√
8mL
h

·
√
E + 2 = N(E) (22)

(*)...using the dispersion relation eq.(8)

with respect to E.

If more than the first energy state is used, eq. (21) becomes eq.(17).

Equation (17) can be regarded as a discrete 2-dimensional DOS (transition to
a 2-dimensional system).

The factor of two in the front accounts for the two extra degeneracies caused
by the second quantum number n2, the energy is now depending on.
(The dependence of the third quantum number exists, but there will be consid-
ered the transition to two dimensions first, which means that the energy mainly
changes with n1 and n2.)

From the considerations above we know, that enlarging the energy from En
to En+1 causes four more states, the spin degeneracy included.

When making the transition from one to two dimensions there’s no further spin
degeneracy but only degeneracy caused by another quantum number, which is
a factor of two.

Building the sum is only possible, because the summands are continuous func-
tions of E.
It’s not possible to do the same with discrete summands (eq.(20)).

∆N3

∆E3
6= ∆N1

∆E1
+

∆N2

∆E2
(23)

Have a look at fig.(4):

The beginning of the green interval is called E1,
the beginning of the red interval E2,
the the end of the green interval E3
and the the end of the red interval E4.

∆E1 = E3− E1

∆E2 = E4− E2
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∆E3 = E3− E2

∆E3 is the difference between energies of two different 1-dimensional densities
and the proper ∆N is not ∆N1 + ∆N2.

Figure 4: A couple of overlapping 1-dimensional densities of states.

2.4.3 2-dimensional DOS

If a quatum dot is enlarged to a plane, the system becomes 2-dimensional.

The 2-d DOS is given by:

D2(E) = 2 · mL1L2

~2π ·
∑

l Θ(E − El)

(24)

L1, L2....size of the 2-dimensional system
Θ...Heaviside step function
El....discrete energies En3

Derivation:

If the spacing of the energy eigenvalues is smaller than kBT the van Hoven
singularities of the 1-dimensional DOS are that close together, that they are no
longer distinguishable.
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Figure 5: Exemplary DOS of a 1-dimensional system using the first energy state
only, eq.(21).

Figure 6: Exemplary DOS of a 1-dimensional system using more than the first
energy state, eq.(17). The peaks are van Hoven singularities. They appear if the
quantum numbers n2 and n3 change. Between those states the energy changes
with quantum number n1. The change of energy with a single quantum number
is described by the 1√

E
- dependence.
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N is found by looking at k space.

In k space the possible states lie in a circle with radius

k =
n1 · 2π
L1

=
n2 · 2π
L2

. (25)

From equation (12) follows

N = 2 · k2π(
(2π)2

L1L2

) + 2 (26)

The plus 2 is for the two electron states at k = (0, 0).

Using the dispersion relation, equation (5), N can be expressed in terms of E

N(E) =
4πmL1L2

h2
· E + 2 (27)

Derivation with respect to E gives the 2-dimensional DOS:

D2(E) =
mL1L2

π~2
(28)

Using more than the first energy state, the DOS is described by eq.(24). The fac-
tor of two in the front is again because of the transition to a higher dimensional
system. This was already explained in the passage above eq.(23).

2.4.4 3-dimensional DOS

If a quatum dot is enlarged to a bulk, the system becomes 3-dimensional.

The 3-d DOS is given by:

D3(E) = 4πL1L2L3(2m)3/2

h3 ·
√
E.

(29)
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Figure 7: Exemplary DOS of a 2-dimensional system using the first energy state
only, eq.(28).

Figure 8: Exemplary DOS of a 2-dimensional system using more than the first
energy state, eq.(24).
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Derivation:

The steps in the 2-dimensional DOS get smaller and finally almost vanish.
N is found by looking at k space.

In k space the possible states lie in a sphere with radius

k =
n1 · 2π
L1

=
n2 · 2π
L2

=
n3 · 2π
L3

. (30)

From equation (12) follows

N = 2 ·
4k3π

3(
(2π)3

L1L2L3

) + 2 (31)

The plus 2 is for the two electron states at k = (0, 0, 0).

Using the dispersion relation, equation (5), N can be expressed in terms of E

N(E) =
8πL1L2L3

3h3
(2m)3/2 · E3/2 + 2 (32)

After derivation with respect to E, we get eq.(29).
The ground state of 3-dimensional systems is E00 = 0, because it’s possible to
solve the bulk case with periodic boundary conditions and therefore n = 0, 1, 2...
(eq. (7)).

3 Electrons confined to a square

The potential energy is
V (x, y) = V (x) + V (y)

V (x, y) = 0 x, y ∈ [0, L]
∞ else

The ansatz can be written as a product, because the potential is separable.

Ψ(x, y) = X(x)Y (y)

17



Figure 9: Exemplary DOS of a 3-dimensional system (bulk), eq.(29). A 2-
dimensional DOS is shown as well (steps) to demonstrate the transition from
two to three dimensions. The ground state in the bulk case is E00 = 0.

The Schrödinger equation for this problem reduces to Helmholtz equation, be-
cause there’s zero potential, where solutions exist.

ĤΨ =
−~2

2m
∆Ψ = EΨ (33)

After the ansatz is put into eq.(33), the partial differential equation can be
separated in the follwing two ordinary ones:

I) X′′

X = −A2

II) Y ′′

Y + 2mE
~2 = A2

A2....separation parameter

I) is solved by

X(x) = X0 · eiAx

The constants A and X0 are determined by the boundary conditions.

Boundary conditions:

The square has finite side length L.
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The boundary conditions in x and y are

X(0) = X(L) = 0
Y (0) = Y (L) = 0.

Only sinusoidal functions satisfy the demand of vanishing wavenfunctions at the
edges of the square.

sin(AL) = 0.

is a condition to the separation parameter.

A =
nxπ

L
nx = 1, 2, 3....

Comment: nx = 0 is no physical solution, because the wavefunction would dis-
appear independent from x.

X0 is the scaling:∫ L

0

(X0)2sin2(Ax)dx = (X0)2

[
x

2
− 1

4A
sin(2Ax)

]L
0

= (X0)2L

2
=! 1

−→ X0 =

√
2
L

Hence

X(x) =

√
2
L
· sin((

nxπ

L
)x).

II) is solved by

Y (y) = Y0 · e
i
q

2mE
~2 −A2y

Again only the sinusoidal functions satisfy the boundary conditions.

sin(

√
2mE
~2
−A2L) = 0

This is a condition to the energy.√
2mE
~2
−A2 =

nyπ

L

with A =
nxπ

L

(
nyπ

L

2
+
nxπ

L

2
)

~2

2m
= E

19



Hence

Y (y) = Y0 · sin((
nyπ

L
)y).

Y0 is found by calculating the scale.∫ L

0

(Y0)2sin2(
nyπ

L
y)dx = (Y0)2

[
y

2
− 1

4(nyπ
L )

sin(2(
nyπ

L
)y)
]L

0

= (Y0)2L

2
= 1

−→ Y0 =

√
2
L

Finally the eigenfunctions and eigenvalues for electrons in a square of finite size
L are:

Ψ(x, y) =
2
L
· sin(

nxπ · x
L

) · sin(
nyπ · y
L

)

(34)

E =
~2

2m
·
(

(
nyπ

L
)2 + (

nxπ

L
)2
)

(35)

nx, ny = 1, 2, 3....

3.1 Dispersion relation

E = ~2

2m ·
(
(
nyπ
L )2 + (nxπL )2

)
(36)

nx, ny = 1, 2, 3....

The energy depends on the two quantum numbers nx and ny and the length of
the square L.

3.2 Density of states

The length L of the square characterizes the DOS.

If L is very small, the energy states are widely spaced (∆E > kBT ). The DOS
is described by the delta peaks of the 0-dimensional system.
Have a look at chapter (2.4.1) and figure (11).

If L becomes that large, that the spacing of the delta functions is about kBT and
the DOS can be described by the quasicontinuous 2-dimensional DOS, which is
a constant (using the first energy state only).
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Figure 10: Dispersion relation for electrons in a square with side length
L = 1 nm. The ground state energy is E11. There’s no state underneath
E11.

Figure 11: Dispersion relation of a square with L = 1 nm. The spacing of the
energy states is about 10−19J , which is much larger than kBT ' 10−21 J/K at
T = 300 K. Hence the DOS is described by the one of a 0-dimensional sytem,
eq. (16).
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D2(E) = mL2

~2π .

(37)

L.....length of the square
Θ...Heaviside step function

Figure 12: Dispersion relation of a square with L = 100 nm. The spacing of the
energy states is about 10−24J , which is much smaller than kBT ' 10−21 J/K
at T = 300 K. Hence the DOS is to be described the one of a 2-dimensional
system, eq.(37). There’s no density below the ground state energy E11.

The transition from the delta peaks to the constant value becomes clear, if the
DOS of a rectangle is studied (next chapter).
If one side of the square becomes larger, while the other stays the same, van
Hoven singularities, that characterize the energy dependence on a single quan-
tum number, appear. With growing length of both sides, they get closer to-
gether until they finally fuse and the DOS approximates the constant value of
the 2-dimensional DOS.

4 Electrons confined to a rectangle

This problem is solved just like the one for the electrons in a square. The results
look similar:

Finally the eigenfunctions and eigenvalues for electrons in a rectangle of finite
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size L are:

Ψ(x, y) =
2√
LxLy

· sin(
nxπ · x
Lx

) · sin(
nyπ · y
Ly

)

(38)

E =
~2

2m
·
(

(
nyπ

Ly
)2 + (

nxπ

Lx
)2

)
(39)

nx, ny = 1, 2, 3....

4.1 Dispersion relation

E = ~2

2m ·
(

(
nyπ
Ly

)2 + (nxπLx )2
)

(40)

nx, ny = 1, 2, 3....

The energy depends on the two quantum numbers nx and ny and the side
lengths Lx and Ly of the rectangle (fig.(13)).

Figure 13: Dispersion relation for electrons in a square with side lengths
Lx = 1 nm and Ly = 5 nm.
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4.2 Density of states

The lengths of the sides of the rectangle characterize the DOS.

If both sides are very small, the energy states are widely spaced. The DOS is a
combination of the 1-dimensional densities in nx and ny and shows van Hoven
singularities.

The DOS is described by eq.(17):

D(E) = 2·
√

2mLx
~π ·

∑
l

Θ(E−Eny,0)√
E−Eny,0

(41)

Lx....length of the rectangle, the width Ly defines the distance between the van
Hoven singularities. It’s included in Eny,0.
Θ...Heaviside step function
Eny,0....energy eigenstates of quantum number ny while nx = 0

Figure 14: Density of states for electrons in a rectangle with Lx = 1 nm and
Ly = 5 nm. There’s no energy below the ground state energy E11 > 0. The
green line is the value of the quasicontinuous 2-dimensional DOS. This value is
approximated if the system becomes larger.

With growing L, the van Hoven singularities get closer together. The DOS is
very sensitive to enlargement of L. Compare fig.(14) and (15). The van Hoven
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singularities lie much closer together, if L is double as large.

If the spacing between the singularities is about kBT , the system can be con-
sidered as two-dimensional and the DOS becomes a constant (green line in
fig.(14)-(16).

The DOS is described by eq.(24) with L1 = Lx and L2 = Ly :

D2(E) =
mLxLy

~2π

(42)

Lx, Ly.....lengths of the rectangle
Θ...Heaviside step function

The sum doesn’t appear in this expression for the 2-dimensional DOS, because
there’s only the energy state with n3 = 1 taken.

Figure 15: Density of states for electrons in a rectangle with Lx = 2 nm and
Ly = 10 nm. The lengths of the sides is double of those in fig.(14), but the
DOS looks much more like the one for a plane (green line).
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Figure 16: Density of states for electrons in a rectangle with Lx = 100 nm and
Ly = 200 nm. Now the DOS can be approximated by the constant value of the
2-dimensional one (green line).

4.3 Program

The dispersion relation and the density of states were studied with Matlab:
The program rectangle.m will ask for the side length Lx and a value for the
ratio Lx/Ly. The program is added in the appendix.

Comment:

The Matlab plots show peaks of different height. Some almost exceed to in-
finity. This is an effect, caused by the approximation of the discrete analytic
expression of the DOS by a continuous function 1√

E
.If the determinant is very

small the function exceeds (van Hoven singularities). To prevent those singu-
larities from dominating the whole density of states , I cut the peaks off to a
reasonable height to be able to study the behaviour of the DOS.

5 Electrons confined to the surface of a torus

5.1 Finding Solutions

There is radial symmetry in the motion around the center 0R of the torus and
the center 0% of the torus cross-section.
One can take the Helmholtz-equation in cylindrical coordinates, just like for
electrons on a tube, but put periodic boundary conditions for the motion in z
direction.

Because only noninterfering electrons are considered, it doesn’t matter that
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the inner circumference of the torus is smaller than the outer one. It’s possible
to transform the tube into a torus by calling the tube’s length L the circumfer-
ence through the center of the torus.

This ansatz will be discussed underneath. It is also possible to make a sec-
ond transformation (rolling out the tube) and treat the electrons in the
torus like electrons in a rectangle, using periodic boundary condi-
tions (nx,ny = 0,1,2,3...).

Tube with periodic boundary conditions (alternative discussion):

L = 2Rπ (43)

In the chosen coordinate system r,ϕ and z are independent from each other and
the Hamilton Operator is separable. Therefore the solution can be written as a
product of functions in the three cylindrical coordinates r, ϕ and z:

ψ(r, ϕ, z) = R(r)Φ(ϕ)Z(z) (44)

For a certain diameter % the R(r) becomes a Dirac-Delta and the ansatz reduces
to

ψ(r, ϕ, z) = Φ(ϕ)Z(z) · c · δ(r − %) (45)

where c is the scaling-factor.

The Nabla operator in the Helmholtz-equation has to be transformed to cylin-
drical coordinates (eq.(96)). The Nabla operating on R(r) is zero.

∆r =
δ2

δr2
+

1
r

δ

δr

R(r) = c · δ(r − %)

The derivation of the delta distribution is by definition deligated to the deriva-
tion of the function f(r), which is described by the distribution.

δ̂(f) =
∫ ∞

0

δ(r − %)f(r)dr = f(%) = 1

δ̂′(f) = −δ̂(f ′) = −f ′(%) = 0
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In this case the f(r) = 1 = f(%). Therefore the derivation of f(%) is zero and
the whole radial part of the Nabla operating on the wavefunction cancels out.

This fact was to be expected. Electrons on the surface of a torus move in three
dimensions, but define an only 2-dimensional mathematical problem. This is,
because the electrons on the surface of the torus, which is defined by the two
fixed radii R and %, have only two degrees of freedom. One in ϕ and one in z.
Therefore it’s sufficient to consider a problem in two dimensions with the ansatz

ψ = Φ(ϕ) · Z(z). (46)

The constant of the separation is chosen to be −m2. The two differential equa-
tions are then

I) Φ′′

Φ = −m2

II) Z′′

Z = m2

%2 −
2mE
h2

(47)

The right side of equation II) is constant as well and will be called −k2.

Ad I): Equation (47,I) is solved by a solution of the following kind:

Φ(ϕ) = Aeimϕ +Be−imϕ (48)

There are two conditions that have to be satisfied by this solution:

• 1) Uniqueness on the surface, concerning the motion in phi

• 2) The probability to find the electron at any angular φ has to be one,
which is a standardisation condition to the solution.

Those conditions determine the paramaters m and Φ0.

1) can be expressed as

Φ(ϕ) = Φ(ϕ+ 2π) (49)
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meaning

Aeimϕ +Be−imϕ = Aeim(ϕ+2π) +Be−im(ϕ+2π)

= Aeimϕeim2π +Be−imϕe−im2π

It is only true, if

eim2π = e−im2π = 1

which can be achieved by m ∈ N0.

A more compact and common way to write the ansatz equation (48) is the fol-
lowing, in which m ∈ Z.

Φ(ϕ) = Φ0e
imϕ (50)

The factor Φ0 is determined by the second condition, the scaling.

∫ 2π

0

|Φ(ϕ)|2dϕ =
∫ 2π

0

Φ · Φ∗dϕ = 1∫ 2π

0

Φ2
0e
imϕe−imϕdϕ = Φ2

0 · ϕ|2π0 = Φ2
0 · 2π = 1

Φ0 =
1√
2π

The solutions in ϕ then are

Φ(ϕ) =
1√
2π
eimϕ ,m ∈ Z (51)

Ad II): Equation (47,II) can be solved with a similar ansatz like the one for
Φ(ϕ). Compare it with equation (50).

Z(z) = Aeikz (52)
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A....constant real coefficient

k =

√
2mE
h2
− m2

r2
(53)

For the solution in Z there are two similar conditions as there are for the φ part:

• 1) Uniqueness concerning the motion in z direction (around the origin)

• 2) The probability to find the electron anywhere between z = 0 and z =
2Rπ has to be 1, which is a standardization condition to the solution in
Z.

In analogy to m, k has to be chosen properly, so that Z(z) is periodic in L and
thus unique concerning the motion around the center of the torus.

Z(z) = Z(z + L)
Aeikz = Aeik(z+L) = AeikzAeikL

eikL = 1

This is satisfied if

k = n · 2π
L

n ∈ Z (54)

A is the scaling factor. Since the wavefunction disappears for z ∈ (−∞, 0) and
z ∈ (L,∞), the limits of the scaling integral can be set from 0 to L.

∫ L

0

|Z(z)|2dz =
∫ L

0

A2eikze−ikzdz

A2 · L = 1

A =
1√
L

Finally the radial part is scaled too:

∫ ∞
0

c2δ2(r − %)rdr =
∫ ∞

0

c2δ(r − %)%dr = c2% =! 1

c =
1
√
%

(55)
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The solution ψ is then

ψ(ϕ, z) = 1√
2π·L

1√
% · e

imϕ · eikz · δ(r − %)

k = n · 2π
L

L = 2Rπ n,m ∈ Z (56)

5.2 Dispersion relation

The energy is the expectation value of the Hamilton operator:

E = 〈ψ|Ĥ|ψ〉 (57)

For the solution eq.(56) a tube was taken and periodic boundary conditions put
in.

If the torus was treated as a rectangle with periodic boundary conditions, the
two degrees of freedom would be x and z.
And the wavefunction:

ψ2(x, z) = 1√
LxLz

eikxxeikzz

kx = nx
2π
Lx

kz = nz
2π
Lz

nx, nz ∈ Z

Lx=̂2%π Lz=̂2Rπ (58)

The solutions can also be found, if the ansatz is a product of two independent
movements in the angulars ϑ and ϕ. (Actually the momenta aren’t linear, but
torsional.)

ψ3(ϕ, θ) = C · eimϕ · einθ · δ(r − %) n,m ∈ Z
(59)

For calculating the dispersion relation it’s equal to use eq.(56), (58) or (59).
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Using (58), the Hamilton operator is

Ĥ =
P̂2

2m
=
−~2

2m
∆ (60)

and the dispersion relation is

E =
~2

2m

((
nx2π
Lx

)2

+
(
nz2π
Lz

)2
)
. (61)

Using (59), the Hamilton operator is the sum of torque operators in the two
angulars ϕ and ϑ (there’s no radial component, because the torus has a fixed
geometry):

Ĥ =
L̂2
ϑ

2mR2
+

L̂2
ϕ

2m%2
(62)

〈ψ|Ĥ|ψ〉 = 〈ψ| L̂2
ϑ

2mR2
+

L̂2
ϕ

2m%2
|ψ〉

=
1

2mR2

∫ 2π

0

ψ(ϑ) · (−~2)
δ

δϑ2
ψ(ϑ)dϑ+

1
2m%2

∫ 2π

0

ψ(ϕ) · (−~2)
δ

δϕ2
ψ(ϕ)dϕ

=
~2

2m
n2
ϕ

%2
+

~2

2m
n2
ϑ

R2
(63)

And the dispersion relation is

E =
~2

2m

((
nϕ
%

)2

+
(nϑ
R

)2
)
. (64)

Using eq.(56) the dispersion relation is a mixture of eqs. (61) and (64) .

But since

Lx=̂2%π Lz=̂2Rπ (65)
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the solutions ψ, ψ2 and ψ3 as well as the dispersion relations E(nx, nz) and
E(nϕ, nϑ) are equal.

Because the significant parameters ϕ and R are used, eq.(64) is called the

DISP of a torus

E = ~2

2m

((
nϕ
%

)2
+
(
nϑ
R

)2
)
.

(66)

nϑ, nϕ = 0, 1, 2, 3.... (67)

Because of the discussion above it’s clear, that the DISP and DOS of a torus
are very similar to the one of the rectangle. The only differences are

L = 2Rπ (68)

and
n = 0→ E0 = 0. (69)

5.3 Density of states

The electrons on the surface of a torus is a two dimensional problem.
The energy depends on the two quantum numbers nϕ and nϑ and on the two
radii R and %.

The total number of states N in calculated using eq.(12) and k from the disper-
sion relation eq.(66).

∆kϕ =
1
%

and ∆kR =
1
R
. (70)

N = 2 · k
2 · π(
1
%·R

) + 2. (71)
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Figure 17: Dispersion relation for electrons in a torus with % = 0.35 nm and
R = 5 nm.The ground state is E00 = 0 J .

The ratio R
% and the total value of R and % is characteristic for the DOS.

R

%
≥ 1. (72)

The minimum value of the ratio is reached, when the radius % of the torus cross-
section equals the radius of the torus ring R.

If both radii are very small (at about 1 nm), the DOS shows the van Hoven
singularities of the 1-dimensional DOS (see eq.(17)).

D(E) = 4R·
√

2m
~ ·

∑
nϕ

Θ(E−Enϕ,0)√
E−Enϕ,0

(73)

R...........radius of the torus
Enϕ,0.....energy eigenstates of quantum number nϕ while nϑ = 0
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The distance between the van Hoven singularities depends on the ratio of the
two radii. It becomes larger the larger the ratio is.

If the radii become larger, the van Hoven singularities flatten and get closer.
The DOS becomes quasicontinuous and approximates the constant value of the
2-dimensional DOS (see eq.(24)) if the spacing between the van Hoven singu-
larities is smaller than kBT :

D(E) = m·4π·R·%
~2

The sum doesn’t appear in this expression for the 2-dimensional DOS, because
there’s only the first energy level (n3 = 1) taken.

Figure 18: Density of states for electrons in a torus with % = 0.35 nm and R = 5
nm. The ground state is E00 = 0 J .

5.4 Program

The dispersion relation and the density of states can be studied in Matlab:
The program torus.m will ask for the radius of the torus cross-section % and a
value for the ratio R

% .
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Figure 19: Density of states for electrons in a torus with % = 0.7 nm and R = 20
nm. The ground state is E00 = 0 J .

Interesting values for modern investigation are diameters of 2R = (10 − 100)
nm and 2% = (1− 1, 5) nm.
Those values are taken from papers (chapt.(8), [9] and [10]).

The studies say, that tori grown from tubes with diameter 0.7 nm, 1.1 nm
and 1.4 nm become circular and stable at diameters 2R > 10 nm, 2R > 20 nm
and 2R > 40 nm, respectively. The strain per atom in a the torus behaves like

1
(2R)2 . In a perfect circular torus the strain per atom is < 0.03eV .
The figures in this section refer to 2% = 1.4 nm, 2R = 40 nm and 2% = 0.7 nm,
2R = 10 nm.

6 Electrons confined to the surface of a sphere

The following part until chapter (6.4) includes background information taken
from references [1],[2] and [3].

The following section will discuss in the most general way the solutions of the
Schrödinger equation in spherical coordinates. The radius will be varied from
classical values to nanoscale. And there will be some discussion about the de-
formation of the sphere to an ellipse and, at the limit, to a tube.

The confinement to the surface can be expressed as a potential, that is zero
right at the surface and infinite anywhere else. Therefore the problem can be
reduced to a two dimensional one in ϑ and ϕ and a constant radial part. Right
at the surface, where solutions exist, the Schrödinger equation reduces to the
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Helmholtz-equation (eq.(1)) with the Nabla of eq.(97).

Since the spherical coordinates are independent for this problem, the ansatz can
be written as a product with a delta function for the radial part:

ψ(r, ϕ, ϑ) = Φ(ϕ) ·Θ(ϑ) · c · δ(r − %). (74)

The Schrödinger equation for this problem is the Helmholtz equation, because
we concentrate on the surface, where the potential is zero.

ĤΨ(r, ϕ, ϑ) =
p2

2m
Ψ(r, ϕ, ϑ) =

−~2

2m
∆ϑϕ = E ·Ψ(r, ϕ, ϑ) (75)

∆ϑϕ is the angular part of the Nabla operator.
There’s no radial part, because r = const..
The Nabla operator doesn’t affect the radial part of the ansatz.

The differential equation that has to be solved for that problem is:

−~2

2m ∆ϑϕ = E ·Ψ(r, ϕ, ϑ)

−~2

2m ·
1
r2 ·

[
1

sin(ϑ)
· δ
δϑ

(sin(ϑ) · ΦΘ′) +
1

sin2(ϑ)
· Φ′′Θ

]
= E ·Ψ (76)

6.1 Background for radial symmetric problems

In radial symmetric potentials, it’s often useful to transform the Cartesian co-
ordinates to spherical ones. The Nabla operator has to be transformed too.
In the following section it will be shown, that the angular part of the Nabla is
closely connected to the square of the operator of the angular momentum L̂.
And further that the radial symmetric problem is solved, if the eigenvalues for
L̂ and L̂2 are found.

[L̂2, Li] = [P̂2, Li] = [̂r2, Li] = 0 (77)

Since L̂2 as well as P̂2 and r̂2 commute with one component of the operator of
angular momentum, they are all invariant with respect to rotation.
Thus in radial symmetric problems, where V (r) = V (r), the whole Hamiltonian
is invariant with respect to rotation.
This means that Ĥ, L̂2, P̂2, r̂2 and Li have a common set of eigenfunctions.

The eigenvalue problem for L̂2 and Li can be analytically solved and the eigen-
values of the Hamiltonian for the electrons on the surface of a sphere are the
eigenvalues of L̂2 times a constant, because

−~2

2m
∆ϑ,ϕ =

L̂2

2mr2
, r = const. (78)
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as we will see.

The following section will concentrate on the eigenvalue problem of L̂2.
The way of solving the eigenvalue problem will be sketched. In the end the
solutions for the angular part of a radial symmetric problem will be presented.

6.2 Operators of angular momentum:

Each operator that has hermetian (see chapter 7) components Ji and satisfies

[Ji, Jj ] = i~
∑
k

εijkJk ,∀i, j (79)

describes an operator of angular momentum.

If two operators don’t commute, e.g.

L1L2 − L2L1 = i~L3, (80)

their expectation values can’t be measured sharply at the same time. They
oscillate around the x3 axis. The factor i~ has is origin in the uncertainty
relation

[xi, pj ] = i~δij . (81)

If two operators commute,

[Ĵ2, Ji] = 0 (82)

they build a system of observables, that can be measured sharply at the same
time. Without restriction Ji is chosen to be Jz.

Ĵ2 and Ĵz satisfy the following eigenvalue equations:

Ĵ2|αjm > = ~2αj |αjm >

Jz|αjm > = ~m|αjm > (83)

~ was pulled out of the eigenvalues, so that αj and m are dimensionless values.
This is, because the expectation value of a linear momentum operator can be
expressed in multiples of ~. Since Ĵ2 and Ĵz are hermetian (see chapter ??) the
eigenfunctions build a basis and the eigenvalues are real.

The solution is found by introducing step operators J± = Lx ± iLy that work
similar like a+ and a for the harmonic oscillator. it can be shown, that J±
working on the eigenfunctions, the eigenvalues for Ĵ2 stay the same and the
eigenvalues of Jz raise or fall about 1.

Ĵ2(J±|αjm >) = ~2αj(J±|αjm >)
Jz(J±|αjm >) = ~(m±1)(J±|αjm >) (84)
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Properties of the eigenvalues:

• −√αj ≤m ≤ √αj

Since Ji is hermetian, the expectation values of J2
x and J2

y are never nega-
tive. Consequently Ĵ2−J2

z = J2
x +J2

y has also a not negative expectation-
value in any state. For |αjm > the expectation value was ~2(αj−m2) ≥ 0,
which verifies the first property.

• There’s a maximum and a minimum for m and they are unique.

Existence:

αj stays the same when J± is applied on |αjm > and encloses m, which
rises or lowers with the number n of applications

Jz(Jn±|αjm >) = ~(m± n)(Jn±|αjm >).

Uniqueness:
Application of Jn− decreases the maximum of m to the minimum in n steps.
Therefore

mmax −mmin = n, n ∈ N.

• αj is definded by mmax and mmax also defines mmin.

Application of J−J+ on |αjmmax > gives an expression for αj :

αj = mmax(mmax + 1) = j(j + 1)

Application of J+J− on |αjmmin > leads to an expression for mmin:

j(j + 1) = mmin(mmin − 1)

Solutions are mmin = j + 1 and mmin = −j. The first one drops out,
because j is already the maximum.

• j are half integers, because of the results above: j − mmin = n and
mmin = −j.

Summarized results:

• Eigenvalues of Ĵ2: ~2j(j + 1), j = 0, 1
2 , 1,

3
2 , 2....

• Eigenvalues of Jz are ~m, m = −j,−j + 1, ......, j − 1, j

• lets call the eigenstates |αjm >= |jm >
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6.3 The orbital angular momentum operator L̂ in real
space:

Trough the correspondence principle L̂ is defined by

L̂ = r̂Xp̂..

The eigenvalue problem eq.(83) for

Ĵ −→ L̂

and

j −→ l

in real space becomes:

L2Ψlm(r) = −~2(rx∇)2Ψlm(r) = ~2l(l + 1)Ψlm(r)

LzΨlm(r) =
~
i

(rx∇)zΨlm(r) = ~mΨlm(r) (85)

The components of L are

Li =
~
i

∑
m,n

εimnxm
δ

δxn

When L is transformed in spherical coordinates, the z component is simply

Lz =
~
i

δ

δϕ
(86)

The square of L in spherical coordinates is

L2 = − ~2

sin2(ϑ)

{
sin(ϑ)

δ

δϑ

(
sin(ϑ)

δ

δϑ

)
+

δ2

δϕ2

}
(87)

Compared to the angular part of the Nabla operator in spherical coordinates

∆ϑϕ = − L2

r2~2
(88)

it becomes clear that the angular part of the kinetic energy in the Hamiltonian
is

Tϑ,ϕ =
L2

2mr2
. (89)

With eq.(86) and (87) eq.(85) becomes:

− 1
sin2(ϑ)

{
sin(ϑ)

δ

δϑ

(
sin(ϑ)

δ

δϑ

)
+

δ2

δϕ2

}
Ψlm(r) = l(l + 1)Ψlm(r)

−i δ
δϕ

Ψlm(r) = mΨlm(r) (90)
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With the ansatz eq. (74) the ϕ-part is determined to be

Φ(ϕ) = Φ0e
imϕ. (91)

Φ(ϕ) has to be scaled and unique with respect to rotation over 2π. (Compare
it with eq.(49) and following) which means, that Φ0 = 1√

2π
and m ∈ Z.

And because of the properties of the eigenvalues of Lz, discussed above: l ∈ Z+
0 .

For the quantum numbers follows:

• l = 0,1,2,3.... called the orbital angular momentum quantum num-
bers and quatizes L̂2

• m = -l,-l+1,....l-,l called the magnetic quantum numbers and quatizes
Lz.

Comment:
The half integer values, that were found for a generalized angular mometum
operator J are eigenvalues of the spin operator.

Φ(ϕ) is put in eq.(90), which leads to a differential equation in ϑ.

− 1
sin2(ϑ)

{
sin(ϑ)

δ

δϑ

(
sin(ϑ)

δ

δϑ

)
−m2

}
Θ(ϑ) = l(l + 1)Θ(ϑ) (92)

With the substitution

t = cosϑ

it becomes

d
dt

[
(1− t2)dΘ

dt

]
+
(
l(l + 1)− m2

(1−t2)

)
= 0

called the generalized Legendre-Differential-Equation.
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It is singular at t = ±1.
Solutions that are regular at t = ±1 behave like (1− t2)m/2.

Thus an ansatz

Θ(ϑ) = (1− t2)m/2 · vm(t)

is made and the following relation is found:

vm(t)′ = vm+1

alternatively

vm(t) =
dmv0(t)
dtm

with v0, the solution of the ordinary Legendre differential equation:

(1− t2)v′′0 − 2tv0 + l(l + 1)v0 = 0

A potential series at t = 0 leads to its solutions the
ordinary Legendre-Polynomials Pl(cosϑ).

Finally the solutions for a radial symmetric problem are

Ψ(r, ϑ, ϕ) = 1
N
· f(r) · e±imϕsinm(ϑ) dm

(dcosϑ)mPl(cosϑ)

(93)

N...scaling

m = 0,1,2,3...l

l = 0,1,2,3....

N =
∫ 1

−1

Pml (t)Pml (t)dt =
2

2l + 2
(l +m)!
(l −m)!
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With

Pml (ϑ) = (−1)msinm(ϑ)
dm

(dcosϑ)m
Pl(cosϑ)

the solution can be written in a more compact way:

Ψ(r, ϑ, ϕ) =
√

2l+2
4π

(l−m)!
(l+m)!

· e±imϕ · P |m|l (ϑ) · f(r)

m = 0,±1,±2,±3....± l

l=0,1,2,3.....

Figure 20: Spherical Harmonics Pml (ϑ) for m=0 and l=0,1,2,3. 2)

Figure 21: Spherical Harmonics Pml (ϑ) for m=0,1,2 and l=2.2)

Comment:

An alternative way to finding Θ(ϑ) was solving the eigenvalue problem for L+

and Lz instead of the one for L̂2 and L̂z. This is possible, because L̂2 and L̂+

commute [
L̂2, L±

]
= 0

and therefor have a common set of eigenfunctions.
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Back to equation (76):

Comparison of L̂2 and ∆ϑϕ in spherical coordinates shows, that eq.(76) can be
written as

L̂2

2mr2
Ψ(r, ϑ, ϕ) = EΨ(r, ϑ, ϕ)

Since the eigenvalue problem for L̂2 was solved above and 1
2mr2 = const., the

wavefunction and energy eigenvalues for electrons 0n the surface of a sphere
are

Ψ(r, ϑ, ϕ) =
√

2l+2
4π
√
%

(l−m)!
(l+m)!

· e±imϕ · P |m|l (ϑ) · δ(r − %)

E = ~2

2mr2
l(l + 1)

6.4 Dispersion relation

The energy eigenvalues are given by

El =
~2

2mr2
l(l + 1) l = 0, 1, 2, 3... (94)

(95)

The energy depends on the quantum number l. l quantizes the absolute value
of the angular momentum.

|L| = ~ ·
√
l(l + 1)

6.5 Density of states

Each energy eigenvalue El is

gl = 2 · (2l + 1)

times degenerated.

The invariance of |L| with respect to rotation (magnetic quantum number m)
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Figure 22: Dispersion relation for electrons on the surface of a sphere with
R = 1 nm. l is the quantum number of angular momentum.

leads to the factor 2l + 2.
Besides that each state is two times spin degenerated.

The total number of states Nl for a Fermi-energy El is given by

Nl =
l∑

k=0

2(2l + 1).

= 2(l + 1)2

Discrete density: ∆N
∆E

∆N = Nl+1 −Nl = 4l + 6

∆E =
~2

2mr2
· 2(l + 1)

∆N
∆E

=
4l + 6

~2

2mr2 · 2(l + 1)

=(94) l

El
+

4mr2

~2
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Figure 23: Density of states for a sphere with r = 1 nm.

Figure 24: Density of states for a sphere with r = 100 nm. Except for the first
energy states, the DOS is quasi constant (2-dimensional DOS).
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6.6 Program

The dispersion relation and the density of states were studied with Matlab: the
program sphere.m will ask for the radius and show the dispersion relation and
the density of states for the chosen radius.

Large surfaces:

Figures (25)-(27) show the density of states for a large sphere, rectangle or
torus. Surface, respectively area are that large (about 40 000 nm2), that they
can be condidered as a plane. The DOS has the same value (green line). It’s
the constant value of the 2-dimensional DOS.

Figure 25: Specific den-
sity of states for elec-
trons on the surface of
a sphere with R = 100
nm.

Figure 26: Specific den-
sity of states for elec-
trons in a rectangle with
Lx = 200 nm and Ly =
200π nm.

Figure 27: Specific den-
sity of states for elec-
trons on the surface of
a torus with r = 100/π
nm and R = 100 nm.
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7 Appendix

Nabla operator in cylindrical coordinates:

∆ =
1
r

δ

δr

(
r
δ

δr

)
+

1
r2

δ2

δϕ2
+

δ2

δz2

=
δ2

δr2
+

1
r

δ

δr
+

1
r2

δ2

δϕ2
+

δ2

δz2
(96)

Nabla operator in spherical coordinates:

∆ =
1
r2

δ

δr

(
r2 δ

δr

)
+

1
r2sinθ

δ

δϑ

(
sinθ

δ

δθ

)
+

1
r2

1
sin2θ

δ2

δϕ2
(97)

hermetian:

A matrix is hermetian if

A = A† (98)

A† means to transpone and complex conjugate (or vice versa) the matrix:

A† = (AT )∗ = (A∗)T

It’s the analogy of a real space symmetric matrix but in complex space.
Hermitesh matrices are square, normal and diagonalisable.

Since each Operator in an n dimensional vector space can be described by an
nXn matrix, one can also call an operator hermetian:

Â = Â†

A quantum mechanical postulate says, that each physical observable (f. i. en-
ergy, position, angular momentum) formally corresponds to a hermetian opera-
tor:
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Â =
∑
j

aj |aj >< aj | (99)

Hermitesh operators

• work the same way on Bra- and Ket-vectors.

• have real eigenvalues

• eigenvectors to different eigenvalues are orthogonal

• if the eigenvalues are degenerated it’s always possible to chose them to be
orthogonal

• the eigenvectors build a basis, a complete set of eigenstates.
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%RECTANGLE

%dispersionrelation and density of states

�

clc
clear all
close allc

h=6.6261*10^(-34);      %in Js
m=9.11*10^(-31);        %in kg

��

F=(h/2/pi).^2./(2*m);

����

disp('Choose a length Lx in meters');
Lx=input('Lx=');             

�

if isempty(Lx)
Lx=1e-9;
fprintf('%e',Lx)
ende

r=Lx/(2*pi);r

fprintf('\n')
fprintf('\n')
fprintf('\n')
disp('Choose a ratio Ly/Lx>1');
fprintf('\n')ff

ratio=input('Ly/Lx=');
fprintf('\n')f

if ratio<1                 %necessary for the formula of the DOS
disp('Invalid value for the ratio! Choose Ly/Lx>1')
fprintf('\n')
ratio=input('Ly/Lx=')
ende

if isempty(ratio)
ratio=2;
fprintf('%e',ratio)
endeeee

R=ratio*r;



Ly=2*R*pi;L

A=Lx*Ly;                 %Area of the rectangle

�����

nR=[1:ratio*50];                                                
nphi=[1:50];            

�

                                              
                                                       
[nR,nphi ]=meshgrid(nR,nphi);
E_nR=nR.^2./R.^2.*F;                            %eigenvalues for nphi=0
E_nphi= nphi.^2./r.^2.*F;                       %eigenvalue for nR=0

��

En=E_nR +E_nphi;                                %energy eigenvalues

���

figure(1)
set(0,'DefaultAxesFontSize',12)
z_par=5;                                        %number of parabolas
subplot(1,2,1)s

for i=1:z_par                                           
plot([0,1],[E_nphi(i,1),E_nphi(i,1)])
hold on
end
hold off
title('E_{n_x}','FontSize', 12)
xlabel('[1]','FontSize', 12)
ylabel('E_{n_x} [J]','FontSize', 12)
axis([0 1 -1/8*E_nphi(z_par,1) (9/8)*E_nphi(z_par,1)])

��

subplot(1,2,2) s

for i=1:z_par
plot([0,1],[E_nR(1,i),E_nR(1,i)])
hold on
end
hold offh

title('E_{n_y}','FontSize', 12)
xlabel('[1]','FontSize', 12)
ylabel('E_{n_y} [J]','FontSize', 12)

�

axis([0 1 -1/8*E_nphi(z_par,1) (9/8)*E_nphi(z_par,1)])

�



���

%DISP%

figure(2)    f

%dispersionsrelation E(n_phi,n_R) over n_R
x=nR(1,:);
y=En;y

for i=1:size(En,1)
plot(x,y(i,:),'Color',[0,1,0])
hold on
plot(x,y(i,:),'.')
hold on
end
hold offh

title('dispersion relation for a rectangle','FontSize', 12)
xlabel('n_x [1]','FontSize', 12)
ylabel('E_{n_x,n_y} [J]','FontSize', 12)

������

%DOS%

nR=nR(1,:);
nphi=nphi(:,1)';
E_nR=E_nR(1,:);
E_nphi=E_nphi(:,1)';

��

                                

�

%quasicontinuous 1d-single-DOS 

�

E=linspace(En(1,2),En(end,end),90000);
[E,El]=meshgrid(E,E_nphi);

�

D_1=(sqrt(2*m)*8*pi*R/h).*heaviside(E-El)./(sqrt(E-El));
D_1((E-El)==0)=0; %problem:1/0

��

plotend=sum(D_1(end,:)~=0);

�

if plotend==size(E,2)
plotend=0
end



�

D_1sum=sum(D_1,1);

����

%quasicontinuous 2d-DOS

�

D_2=16*pi^3*m*R*r/(h^2); 

��

figure(3)
set(0,'DefaultAxesFontSize',12)

��

%D_1sum(D_1sum> c )=c ;      %c= cut off the infinite values

���

plot([E(1,1),E(1,1:(end-plotend))],[0,D_1sum(1:(end-plotend))])
hold on
plot([E(1,1),E(1,end-plotend)],[D_2,D_2], 'Color',[0,1,0])
hold off
legend('DOS','constant value of 2d DOS','FontSize',20)
title('Density of states for a rectangle','FontSize', 14)
xlabel('E  [J]','FontSize', 12 )
ylabel('D(E)  [J^{-1}]','FontSize', 12)

�����

%specific density of states (DOS per unit area)

�

d=D_1sum./A;
d2=D_2./A;d

figure(4)
set(0,'DefaultAxesFontSize',12)

�

%d(d> c)= c;      %c= cut off the infinite values

���

plot([E(1,1),E(1,1:(end-plotend))],[0,d(1:(end-plotend))])
hold on
plot([E(1,1),E(1,end-plotend)],[d2,d2], 'Color',[0,1,0])
hold off
legend('DOS','constant value of 2d DOS','FontSize',20)
title('Specific density of states for a rectangle','FontSize', 14)
xlabel('E  [J]','FontSize', 12 )
ylabel('d(E)  [J^{-1}m^{-2}]','FontSize', 12)



��



%TORUS

%dispersionrelation and density of states

%

clc
clear all
close all

c

h=6.6261*10^(-34);      %in Js
m=9.11*10^(-31);        %in kg

mm

F=(h/2/pi).^2./(2*m);

FFF

disp('Choose a radius r for the torus cross section in meters');
r=input('r=');             %radius of the torusring

r

if isempty(r)
r=0.7e-9;
fprintf('%e',r)
end

ee

fprintf('\n')
fprintf('\n')
fprintf('\n')
disp('Choose the ratio R/r >= 1');
fprintf('\n')

ff

ratio=input('ratio=');

rr

if ratio<1
disp('Invalid choice of ratio, ratio has to be >=1')
     r=input('r=');
end

e

if isempty(ratio)
ratio=2;
fprintf('%e',ratio)
end

eeee

R=ratio*r;

R

nR=[0:ratio*70];             
nphi=[0:70];            



��

A=4*pi^2*R*r;                         %surface of the torus

AA

%DISP                                             
                                                       
[nR,nphi ]=meshgrid(nR,nphi);
E_nR=nR.^2./R.^2.*F;                            %eigenvalues for nphi=0
E_nphi= nphi.^2./r.^2.*F;                       %eigenvalues for nR=0

EE

En=E_nR +E_nphi;                                %energy eigenvalues

EEEE

figure(1)
set(0,'DefaultAxesFontSize',12)
z_par=5;                                        %number of parabolas
subplot(1,2,1)

s

for i=1:z_par                                           
plot([0,1],[E_nphi(i,1),E_nphi(i,1)])
hold on
end
hold off
title('E_{n_{\phi}}','FontSize', 12)
xlabel('[1]','FontSize', 12)
ylabel('E_{n_{\phi}} [J]','FontSize', 12)
axis([0 1 -1/8*E_nphi(z_par,1) (9/8)*E_nphi(z_par,1)])

aa

subplot(1,2,2) 

s

for i=1:z_par
plot([0,1],[E_nR(1,i),E_nR(1,i)])
hold on
end
hold off

h

title('E_{n_{\theta}}','FontSize', 12)
xlabel('[1]','FontSize', 12)
ylabel('E_{n_{\theta}} [J]','FontSize', 12)

y

axis([0 1 -1/8*E_nphi(z_par,1) (9/8)*E_nphi(z_par,1)])

aaaa

 %DISP

 



figure(2)     %dispersionsrelation E(n_phi,n_R) over n_R
set(0,'DefaultAxesFontSize',12)s

x=nR(1,:);
y=En;y

for i=1:size(En,1)
plot(x,y(i,:),'Color',[0,1,0])
hold on
plot(x,y(i,:),'.')
hold on
end
hold offh

title('dispersion relation for a torus','FontSize', 12)
xlabel('n_{\theta} [1]','FontSize', 12)
ylabel('E_{n_{\theta},n_{\phi}} [J]','FontSize', 12)
axis([x(1) 100  En(1,1) En(1,100) ]) a

        

%DOS%

nR=nR(1,:);
nphi=nphi(:,1)';n

E_nR=E_nR(1,:);
E_nphi=E_nphi(:,1)';EE

                                 

%quasicontinuous 1d-single-DOS %

E=linspace(En(1,2),En(end,end),90000);
[E,El]=meshgrid(E,E_nphi);[

D_1=(sqrt(2*m)*8*pi*R/h).*heaviside(E-El)./(sqrt(E-El));
D_1((E-El)==0)=0;   %problem: 1/0DDD

plotend=sum(D_1(end,:)~=0);p

if plotend==size(E,2)
plotend=0
ende

D_1sum=sum(D_1,1);D



xx

%(quasicontinuous DOS) 2d-DOS%

D_2=16*pi^3*m*R*r/(h^2);                     DD

figure(3)
set(0,'DefaultAxesFontSize',12)s

%D_1sum(D_1sum> c )=c;   %c= cut off the infinite values%%

plot([E(1,1),E(1,1:end-plotend)],[0,D_1sum(1:end-plotend)])
hold on
plot([E(1,1),E(1,end-plotend)],[D_2,D_2], 'Color',[0,1,0])
hold off
legend('DOS','constant value of 2d DOS','FontSize',12)
title('Density of states for a torus','FontSize', 12)
xlabel('E  [J]','FontSize', 12 )
ylabel('D(E)  [J^{-1}]','FontSize', 12)yyyyy

%specific density of states%

d=D_1sum  ./A;
d2=D_2  ./A;dd

figure(4)
set(0,'DefaultAxesFontSize',12)ss

%d(d>c)=c;        %c= cut off the infinite values%%

plot([E(1,1),E(1,1:end-plotend)],[0,d(1:end-plotend)])
hold on
plot([E(1,1),E(1,end-plotend)],[d2,d2], 'Color',[0,1,0])
hold off
legend('DOS','constant value of 2d DOS','FontSize',12)
title('Specific density of states for a torus','FontSize', 12)
xlabel('E  [J]','FontSize', 12 )
ylabel('d(E)  [J^{-1}m^{-2}]','FontSize', 12)y



%SPHERE

%dispersionrelation and density of states

clc
clear all
close all

c

h=6.6261*10^(-34);      %in Js
m=9.11*10^(-31);        %in kg

m

l=[0:400];
R=input('Value for the radius R=');
if isempty(R)
    R=1e-9
end

ee

F=(h/(2*pi))^2./(2.*m.*R.^2);

F

E=F.*l.*(l+1);                   %energy eigenvalues

E

A=4*pi*R^2;                      %surface of a sphere

AAA

%DISP

%

figure(1)

f

set(0,'DefaultAxesFontSize',12)

s

plot(l,E,'.',l,E)
title('Dispersion relation')
xlabel('Drehimpulsquantenzahl l','FontSize', 12)
ylabel('E [J]','FontSize', 12)
 

   

%DOS

%

D=l./E+(16*pi^2*m*R^2/h^2);

D

figure(2)
set(0,'DefaultAxesFontSize',12)

s

plot(E,D,'.',E,D)
title('Density of states','FontSize', 12)
xlabel('E [J]')
ylabel('D(E) [J^{-1}]','FontSize', 1)

y



ááá

%specific density of states (DOS per unit area)

%

d=D./A;

d

figure(3)
set(0,'DefaultAxesFontSize',12)

s

plot(E,d,'.',E,d)
title('Specific density of states for a spherical shell','FontSize', 12)
xlabel('E [J]')
ylabel('d(E) [J^{-1}m^{-2}]','FontSize', 1)


