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Epitaxial growth of quaterphenyl thin films on gold „111…
S. Müllegger,a) I. Salzmann, R. Resel, and A. Winkler
Institute of Solid State Physics, Graz University of Technology, Petersgasse 16, A-8010 Graz, Austria

~Received 4 August 2003; accepted 8 October 2003!

The crystal structure and molecular arrangement of para-quaterphenyl~4P! grown on single
crystalline Au~111! was investigated over a wide thickness range. The molecular arrangement in the
first monolayer, as investigated with low energy electron diffraction, shows a highly regular
structure. This wetting layer is defined by adsorbate–substrate interactions and forms a prestage for
the epitaxial growth of 4P single crystalline islands, as observed in x-ray diffraction. Two similar
orientations of the 4P bulk phase are observed, with the~211! and ~311! planes parallel to the
Au~111! surface. The alignment of the molecules was kept unchanged from the first monolayers up
to a film thickness of 200 nm. ©2003 American Institute of Physics.@DOI: 10.1063/1.1631380#
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Recently, highly crystalline thin films of organic sem
conductors have attracted large interest in the field of orga
~opto!electronics.1–6 Defined interfaces, the right molecula
orientation within a crystalline film and large domain siz
are required to enhance the performance of such device7,8

In particular, oligo-phenyls have been studied in detail a
have proven their applicability in electronic and optoele
tronic devices.9–13 In this letter we present studies on th
structure and epitaxial growth of para-quaterphe
(C24H18, 4P) thin films on single crystalline Au~111!, from
the initial stages up to a thickness of 200 nm.

The sample preparation and low energy electron diffr
tion ~LEED! measurements were performed under ultrah
vacuum conditions (10210 mbar). The single crystal Au~111!
surface was cleaned using conventional sputter/annea
techniques. A home-built Knudsen cell was applied for
4P film deposition. The films were evaporated at room te
perature with a rate of 0.18 nm/min. The mean film thickn
was monitored by a water-cooled quartz crystal microb
ance during the evaporation process. In combination w
thermal desorption spectroscopy~TDS!, this allows the
preparation of well-defined 4P mono- and multilayer films14

An Omicron micro-channelplate low energy electron diffra
tion instrument~MCP-LEED! was used for crystal structur
determination of the 4P monolayer, which allows for lo
emission current~nA! to prevent potential damage of th
organic film by electron bombardment. No significant infl
ence of the Au~111! reconstruction15,16 on the 4P monolaye
growth was observed.17

The crystal structure of the 4P bulk was investigatedex
situ by x-ray diffraction~XRD!, performingQ/2Q scans and
pole figures18 on 30 and 200 nm thick films. A Philips X’Per
texture goniometer with CrKa radiation was used, allowing
investigations in the whole orientation space. The pole
ures were taken with an angular resolution ofDc51° and
Dw53°. Simultaneous measurements of the Au~111! sub-
strate and the 4P film were done in order to detect the mu
relationship of the crystalline orientations. Analysis of t
diffraction data were performed on the basis of their sin
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crystal structures19,20 by using the softwarePOWDER CELL,
STEREOGRAMM, andSTEREOPOLE.21–23

Figure 1~a! shows a LEED image of the 4P monolay
on Au~111!. Due to a pronounced energy dependence of
spot intensities~extinctions! it was necessary to record a s
ries of LEED images between 15 and 45 V. The positions
the spots in each single LEED image were subsequently
rected for inherent image deformation of the MCP-LEE
optics. The corrected spot positions were transferred int
separate representation free of image deformation, as sh
in Fig. 1~b!. Considering the rotational symmetry and mirr
planes of the Au~111! surface, we could explain the LEED
pattern of the 4P monolayer by means of one single recip
cal unit cell, see Fig. 1~b!. The corresponding real spac
surface unit cell of the saturated 4P monolayer is in abso
values:a51.0960.01 nm, b52.1960.01 nm, g57462°,
F537.5°. The quantitiesa, b, g, andF are defined in Fig.
2. The matrix notation of this superstructure is

M5S 8 1

2.75 4.5D
~point-on-line commensurism!.24 The high symmetry of the
Au~111! surface yields a total of 12 equivalent orientatio
of the 4P surface unit cell relative to the Au surface~do-
mains!.

FIG. 1. ~a! LEED image of the 4P monolayer on Au~111! at 16 V. The
reciprocal surface unit cell is indicated by the parallelogram. The orienta
of the Au~111! substrate is represented by the Au^112̄& direction.~b! Rep-
resentation of the LEED pattern as obtained from a series of LEED ima
at various voltages after correction for image deformation.
6 © 2003 American Institute of Physics
 license or copyright, see http://apl.aip.org/apl/copyright.jsp
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For the thick layers XRD-pole figures were taken of t
five strongest reflections of 4P as determined from the mo
clinic crystal structure of 4P.21 Figure 3 shows pole figures o
the 211 and 201 reflections. A new software was develo
to perform the indexation process.23 Two different orienta-
tions of the 4P crystallites relative to the Au~111! substrate
were found: 4P~211! and 4P~311! i Au~111!. Their relative
proportion was determined on the basis of the observed
densities:~211! was found twice as much as~311!. More-
over, the indexation process yields the alignment of the
crystallites with respect to certain directions of the Au~111!
surface~epitaxial relationship!. For the~211! and ~311! ori-
entation we get:@01̄1#4Pi@538̄#Au and@ 1̄30#4Pi@35̄2#Au , re-
spectively. Each of these two orientations exhibits 24 sy
metrical equivalents, due to the substrate symme
combined with the different growth possibilities of the 4
crystallites.

The 4P crystal structure20 was used to determine the a
rangement of the 4P molecules relative to the Au~111! sur-
face. In case of the~211! orientation the aromatic planes o
the 4P molecules are oriented parallel to the 4P~211! plane
and hence to the Au~111! surface, see Fig. 4. The long mo
lecular axes are aligned along azimuths~the Aû 11̄0& direc-
tions! or along interazimuths~the Aû 12̄1& directions!. For
~311!, the aromatic planes are 7° off the Au~111! surface and
the long molecular axes are tilted by 3° relative to the~in-
ter!azimuthal direction. For both orientations, fractions

FIG. 2. Real space representation of the saturated 4P monolayer surfac
cell on a Au~111! surface. Two different arrangements of 4P~van der Waals
size! relative to the Au~111! surface are shown:~a! azimuthal and~b! intera-
zimuthal orientation, which correspond to the long molecular axes alig
parallel to the Aû11̄0& and Aû 112̄& direction, respectively.

FIG. 3. Pole figures of the 211~a! and 201~b! reflection taken from a 200
nm 4P thin film. Dark areas represent directions of enhanced pole dens
Thec limit of 20° and 40° are given by circles. The enhanced pole dens
in the pole figures are assigned to orientations of 4P crystallites, exam
for 4P~211! and 4P~311! i to Au~111! are denoted by diagonal and straig
crosses, respectively.

Downloaded 22 Sep 2004 to 141.14.235.78. Redistribution subject to AIP
o-

d

le

P

-
y

f

80% and 20% are found for azimuthal and interazimut
alignment, respectively.

For films with different thickness, neither quantitativ
nor qualitative differences were observed by XRD. The
crystallites grow as needle-like islands and have a fixed c
tallographic relationship with the Au~111! substrate. There-
fore, the thin film can be interpreted as epitaxially grown

Both azimuthal and interazimuthal molecular alignme
within the 4P bulk phase are obviously caused by the ge
etry of the Au~111! surface~adsorbate–substrate interaction!.
Although we cannot derive any information about the m
lecular arrangement within the 4P monolayer directly fro
LEED measurements, it is obvious to assume that the
lecular orientation is the same in the monolayer and the b
phase. Therefore, we propose an arrangement of two 4P
ecules per unit cell, with one molecule lying flat and t
other one being side tilted~Fig. 2! and with the long molecu-
lar axes of the molecules oriented either azimuthally or
terazimuthally. This molecular arrangement~two-
dimensional space group: obliquep2) is corroborated by the
following experimental facts:~1! In our thermal desorption
measurements17 we observed two distinct monolayer adsor
tion states for the 4P molecules, suggesting the existenc
two different binding states of the 4P molecules;~2! we com-
pare the area of the 4P surface unit cell (2.3 nm2 or
431013 unit cells/cm2) to the quantitative 4P coverage of th
saturated monolayer (831013 molecules/cm2 equal to
;0.3 nm mean thickness! measured with the quartz mi
crobalance. This comparison suggests two molecules per
face unit cell;~3! the required van der Waals space of the tw
molecules per unit cell as well as the obvious similarity
this arrangement to the~211! orientation suggest a side tilt o
one molecule, similar to 6P on Au~111! as observed by scan
ning tunneling microscopy~STM!.13 As a matter of conven-
tion, these two types of differently bound molecules could
interpreted as ‘‘first and interstitial layer.’’

The monolayer represents a prestage for the further
crystal growth. The 4P multilayer growth prefers the~211!
orientation ~Fig. 4!, which is guided by that prestage, b
cause the~211! plane shows a repeating unit very similar
the monolayer surface unit cell:av51.38 nm, bv
51.88 nm, andg579.3°. The~311! orientation is similar to
~211! but there are small tilt angles of 7° for the aroma

unit

d
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s

les

FIG. 4. Arrangement of the 4P molecules within the~211! plane ~bulk
phase! seen from top~left part! and along the direction of the long molecula
axes~right part!. The aromatic planes of the 4P molecules lie within t
4P~211! plane. The repeating unit is defined byav , bv , and the cell angle,
g. Two orientations relative to the Au~111! surface were observed, where th
long molecular axis is parallel to the Au^11̄0& ~azimuthal! or Au^112̄&
~interazimuthal! direction, respectively.
 license or copyright, see http://apl.aip.org/apl/copyright.jsp
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planes and 3° for the long molecular axis. The repeating
of ~311! is: av51.87 nm,bv51.88 nm, andg576.9°. Pre-
sumably, the intermolecular forces between neighboring
molecules play a more important role in the formation
crystallites with the~311! orientation.

In conclusion, we have experimentally verified th
quaterphenyl grows epitaxially on Au~111!. The monolayer
is governed by adsorbate–substrate interactions, leading
regular structure with the molecules lying parallel to the s
face and oriented either along the Au^11̄0& or the Aû 112̄&
direction. This monolayer acts as a prestage of the fur
film growth, resulting in 4P crystallites with the~211! or
~311! plane being parallel to the Au~111! surface. In both the
monolayer and the multilayer islands, the 4P molecules
hibit the same well-defined orientation parallel to t
Au^11̄0& and Aû 112̄& direction.

This work was supported by the Austrian FWF, Proje
No. P15625 and P15626.
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