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Preface

This script was written by Martin Oehzelt and Thomas Haber as a guide for
the exercise X-ray Diffraction within the course Praktikum für Fort-
geschrittene (511.121). The contents are based on the diploma thesis of
T. Haber [1]. This manuscript is also suited for the preparation regarding the
exercise Applied X-ray Diffraction within the course Experimentelles
Praktikum (513.119).

The aim of the course is to learn to apply the theoretical basics of x-
ray diffraction to real problems, to get operating experience with the lab
equipment and to strengthen the skills in data evaluation. Therefore a certain
level of preparation is indispensable. Please read through the script before
attending the course. The knowledge of each participant will be checked at
the beginning of the exercise. The preparation for the course contributes one
third of the achievable points. Please note that no formulas except of Bragg’s
law will be asked. The most important topics are:

• X-ray radiation: Bremsstrahlung and characteristic radiation; genera-
tion and detection

• what is a crystal lattice, a unit cell and a lattice plane

• The principle of spherical and stereographic projection

• Two conditions for diffraction: Bragg’s law and parallelism condition

• Powder Diffraction (θ/2θ-scans with the SIEMENS)

• Single Crystal Diffraction (Pole Figure Measurements with the PHILIPS)

When writing the lab log please add your name, matriculation number, email
address as well as the date of the exercise.

Please help to improve the script by pointing out mistakes and flaws, so
that they can be corrected. Thanks in advance, Thomas Haber.
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Chapter 1

Fundamentals

1.1 X-Ray Radiation

X-rays are electromagnetic waves with a wavelength in the range of 10−5 to
100 Å. This wavelength is generated by energy-loss of electrons. There are
two different ways for electrons to lose their energy, depending whether they
are free or bound. If they are free they can interact with any material (e.g.
elastic scattering, inelastic scattering) and lose an arbitrary amount of their
kinetic energy which leads to a continuous spectrum (section 1.1.1). In case
of bound electrons they lose a certain amount of their potential energy when
they change their energy level. Since these electronic levels have discrete en-
ergies, X-rays with certain wavelengths are generated. The energy levels and
thus the wavelengths are naturally dependent on the material and therefore
the spectrum of the X-rays are characteristic for a material (section 1.1.2).

1.1.1 Bremsstrahlung

The continuous radiation is emitted when electrons accelerate or decelerate
(e.g. in the field of an atomic nucleus). The wavelength of the emitted
X-ray depends on the energy loss or gain of the electron. Therewith there
is a minimum wavelength λmin corresponding to the full kinetic energy of
the electron Emax. The kinetic energy is the electron charge e times the
acceleration voltage V which leads to

Emax = eV = hνmax =
hc

λmin

(1.1)

λmin =
hc

eV
(1.2)
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Figure 1.1: a) shows some schematic spectra of Bremsstrahlung dependent
on the acceleration voltage and b) shows the spectra with the additional
characteristic features.

where e = 1.602·10−19C is the charge of the electron, h = 6.6255·10−34Js
is Planck’s constant and c = 2.2998 · 108ms−1 is the light speed.

This is the reason for a cut off at the lower end of λmin. The probabil-
ity to lose Emax at once is rather low. Every single interaction leads to a
deceleration and to an X-ray photon. The average over many electron-atom
interactions results in the continuous spectrum. These typical spectra are
shown in Fig. 1.1(a). The continuous X-ray spectrum is used e.g. for X-ray
radiography in medicine where typically tungsten X-ray tubes are used.

1.1.2 Characteristic X-Ray Radiation

Additionally to the Bremsstrahlung a material dependent characteristic X-
ray radiation can occur. When a material is hit by high energy electrons
there is a probability to ionize these atoms. The emitted electrons had a well
defined binding energy and electron from higher electron levels (less binding
energy) will relax to the unoccupied electronic states. When an electron
changes its energy level, an X-ray photon is emitted. The energy of this
photon is given by the difference of the binding energies of the two levels.
Since the energy levels depend on the material the energies of the emitted
X-ray photons are characteristic for each atom.

Within an atom there are several shells of energy levels (K-, L-, M-, ...)
and an emitted electron can be replaced by an electron of any higher shell.
The nomenclature of the resulting wavelengths is related to the shells which
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are involved in the transition. The first letter is always the refilled shell. The
second letter is denoted in small Greek letters increasing with the distance
of the shells. The electronic transition between shells L → K emits the
Kα radiation whereas Kβ is emitted by the transition M → K and Lα by
M → L. Due to the spin-orbit coupling several energy levels are possible
within one shell. There are for example three different levels in the L shell.
Two of them allow an L → K transitions (LII and LIII). These transitions
lead to Kα1 and Kα2. Indeed their splitting is very small and in many cases
the last index is neglected concerning experiments. A schematic spectrum of
the characteristic radiation additionally to the continuous spectrum is shown
in Figure 1.1(b).

1.1.3 X-ray Generation

(a) Philips Glass Diffraction X-Ray Tube. (b) Open view of the tube.

Figure 1.2: A typical X-ray tube used in X-ray diffractometers. In Figure a
you can see the tubular metal body with the Beryllium window. Figure B
shows the inside of the tube where you can see the water nozzle for cooling.
Of course a tube cannot be opened because of vacuum conditions.

Conventional X-ray tubes are vacuum tube diodes with a cathode made of
Tungsten and used up to −50kV. The electrons are emitted and accelerated
to the anode. There the accelerated free electrons hit the electron cloud of the
anode and are decelerated. The anode material is partly ionized and inner
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(a) synchrotron (b) beamline

Figure 1.3: Schematic drawing of a synchrotron with the storage ring and
the beam lines.

shell electrons are emitted. This state of the anode atom is not stable and
relaxes when electrons of higher levels fill up the empty inner shell states. In
this process X-ray radiation is generated. The energies of the different states
depend on the material as well as the wavelengths of the generated X-rays.

The X-rays are emitted through Beryllium windows which are shown in
Figure 1.2(a). Of course the radiation is generated in all directions which
means that only the minor part of the totally generated radiation really
transmits the tube windows. The main part is absorbed and converted into
heat. The cooling is very important to run the X-ray tube which is shown
in Figure 1.2(b) and realized by a cold water flow through the tube.

A different way to generate photons with the wavelength of X-rays is used
in synchrotrons. In X-ray tubes the accelerated electrons are decelerated
when hitting a material. The electrons in a synchrotron are running in an
UHV (ultra high vacuum) storage ring. There the electrons have a constant
velocity near c. As every accelerated charge generates an electromagnetic
wave and the electrons in the storage ring are forced to a constant orbit, these
electrons experience centrifugal forces. This centrifugal forces accelerate the
electrons in a new direction and are the origin of the so called synchrotron
radiation. If the velocity of the electrons and the centrifugal force have a
certain value, synchrotron radiation with a wavelength of X-rays is generated.
The intensity of a synchrotron is by several orders of magnitude higher.
Additionally the radiation of a synchrotron is much higher collimated than
the X-rays from a tube. Furthermore the wavelength of a synchrotron is
tuneable, which is very useful for numerous experiments. Figure 1.3(a) shows
a schematic drawing of a synchrotron with the storage ring and the different
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(b) Solid State Detector

Figure 1.4: Two of the most used detectors for X-ray radiation. A gas filled
proportional counter (a) for large count rates of ionization and a solid state
detector for energy dispersive detection (b).

beam lines.

1.2 X-Ray Detectors

The principle of X-ray detection is to convert high energy photons to electric
signals. One possibility to realize it is to use a gas-filled proportional
detector which is shown in Figure 1.4(a). The detector is filled with an
inert gas and an X-ray photon ionizes the gas. Between the two electrodes
high voltage is applied which accelerates the charged molecules to one of the
electrodes. On its way through the gas the ions can ionize other atoms and
the current measured is proportional to energy of the incoming photon. The
numbers of photons are counted. The energy dispersion is usually rather
weak.

Another detector is the scintillator . It consists of an optically active
metal, usually NaI, that generates a brief optical flash when an X-ray photon
is absorbed. This light is transferred to a photomultiplier tube whose pho-
tocathode emits electrons when illuminated. The flash does not depend on
the energy of the X-ray photon and thus detection is not energy dispersive.

The third kind of X-ray detectors are solid state detectors as shown
in Figure 1.4(b). They consist of a Si or Ge diode operated with reverse
bias. An incoming X-ray photon causes additional charge carriers which
lead to a change of current that is detected. The quantity of the charge
carriers is dependent on the energy of the X-rays which enables an energy
dispersive measurement. Both the count rate and the resolutions of a solid
state detector is comparably low to the other detectors. However they enable
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an energy dispersive measurement and are thus indispensable for numerous
applications.

1.3 Crystallography

This section is just be a very brief introduction to crystallography pointing
out the most important things concerning this exercise: the crystal lattice,
its unit cell, the basic nomenclature in crystallography, and the concepts of
diffraction. For more details books of solid state physics or dedicated books
for crystallography can be recommended. [2]

1.3.1 Crystal Lattice and the Unit Cell

The lattice of a crystal is described by a right handed coordinate system
which is not necessarily orthogonal. Since this coordinate system defines
the lattice of the crystal, the length of the base vectors are called lattice
constants |~a|, |~b| and |~c| as well as the angles α, β, and γ between them.
A parallelepiped is formed by the lattice constants, which is called the unit
cell of the crystal. Any lattice point is characterized by the lattice vector
~r = u~a + v~b + w~c where u,v and w are integers. It means that starting from
any point ~r′ the crystal is completely equivalent at a point ~r′′ when ~r′′:

~r′′ = ~r′ + u~a + v~b + w~c (1.3)

In some simple crystals the corners of the unit cell are equivalent to the
position of the atoms which is not the case in most of the crystals. In other
words the lattice describes the periodicity of the crystal but not the position
of atoms or molecules. The lattices can be classified by seven crystal systems
listed in Table 1.1 and 14 Bravais–lattices shown in Figure 1.5 ([3, p. 32]
and [2, p. 66]).

9



crystal system lattice constants angles
triclinic a 6= b 6= c 6= a α 6= β 6= γ 6= α

monoclinic a 6= b 6= c 6= a α = γ = π
2

orthorombic a 6= b 6= c 6= a α = β = γ = π
2

tetragonal a = b 6= c α = β = γ = π
2

rhombohedral a = b = c 90 6= α = β = γ < 2π
3

hexagonal a = b 6= c α = β = π
2
; γ = 2π

3

cubic a = b = c α = β = γ = π
2

Table 1.1: Lattice constants and angles of the crystal systems.

1.3.2 Lattice Planes

A plane passing through three lattice points is called lattice plane. In princi-
ple it is possible to describe any plane by its axis intersections as an integer
multiple of |~a|, |~b|, |~c| as shown in Figure 1.6 where the plane could be named
(324). In case of planes parallel to one or two base vectors with no intersec-
tion between them (except at ∞) this nomenclature becomes unhandy. It is
more convenient to take the reciprocal values of the intersections, multiplied
with the least common multiple, to name the planes. The plane in Figure 1.6,
according to the reciprocal values (1

3
1
2

1
4
), would be denoted as (463) plane.

The problem mentioned above is thus solved because no intersection lead to
the value of ∞−1 which is zero. These indices (hkl) are called Miller Indices
of a plane. Due to the equivalence of all lattice points the (hkl)–plane is not
a single plane but the entirety of all equivalent planes in the crystal parallel
to each other.

1.4 The Spherical and Stereographic Projec-

tion

The spherical projection is the first step to a representation of a three
dimensional lattice. As shown in Figure 1.7 the idea is to draw a unit sphere
around the crystal and project its plane normal vectors onto this sphere.
In Figure 1.7 the projected planes are limited to Miller indices lower than
two. The result is a three dimensional unambiguous projection of the crystal
structure. The intersections are called poles and are denoted with the indices
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Figure 1.5: Unit cells of the 14 Bravais–lattices: 1: triclinic; 2, 3: monoclinic;
4, 5, 6, 7: orthorombic; 8: hexagonal; 9: rhombohedral; 10, 11: tetragonal;
12, 13, 14: cubic.
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Figure 1.6: The lattice plane (hkl) = (4 6 3).

of the plane. To determine a pole by a tuple (ϕ, ψ) one lattice plane is chosen
to be at (ϕ, ψ) = (0, 0), in this case (100) and a second plane, in this case
(010) is chosen which is also at ψ = 0◦ and ϕ = 90◦. The lines to the poles
span a plane, which is in this case the x-y-plane as shown in Figure 1.7. This
way each pole has a well defined tuple (ϕ, ψ) with ϕ measured clockwise in
the range of 0 . . . 360◦ and ψ is the angle to the x-y-plane in the range of
−90 . . . 90◦.

In general a three dimensional projection is not very useful because most
illustrations are printed and therefore limited to two dimensions. The stere-
ographic projection is a way to project the poles of the spherical projection
to a two dimensional plane. Figure 1.8 shows the principle of the stereo-
graphic projection where P represents a point of the spherical projection. A
line to the south pole (or the north pole if the point is in the lower hemi-
sphere) is drawn which intersects the plane of ~e1 and ~e2 at the point P ′. The
result is a two dimensional picture of the poles and thus a two dimensional
representation of the crystal structure. The tuple (ϕ, ψ) can be calculated
from the position of P ′. The angle ϕ of course remains the same in the
spherical projection and the angle ψ can be calculated by:

r′ = tan
ψ

2
(1.4)

To make the stereographic projection easier to read, additionally to the
poles a polar net is projected in the same way, which is shown in Figure
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Figure 1.7: The spherical projection of a crystal structure is the projection
of the planes on a unit sphere around the crystal. In this case no higher
Miller indices than one are used. The projection of a plane is realized by the
intersection of its plane normal vector and the unit sphere. This leads to an
unambiguous three dimensional projection of the crystal structure.

1.9. The polar net is drawn on the unit sphere with circles in steps of 10◦

and lines every 45◦ in ϕ. On the right side of the picture the stereographic
projection of the net is shown which makes a grid for the tuples (ϕ, ψ).

1.5 Diffraction

In a diffraction experiment an incident beam is directed to the specimen
and diffracted intensity is detected. Diffraction of electromagnetic waves is
described within the theory of electrodynamics. A mathematical approach
is shown in [4, p. 28-32]. To understand the methods used within this lab
it is enough to mention the most important conditions of diffraction. The
incident beam is named ~k0 and the diffracted beam is ~k while the difference
of these vectors, as shown in Figure 1.10, is called scattering vector ~S and
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Figure 1.8: The stereographic projection is a projection of the poles, gener-
ated with the spherical projection, onto the plane of ψ = 0. The point P ′ is
located at the intersection of the plane and a line from the point P to the
‘south pole’.

is defined as:
~S = ~k − ~k0 (1.5)

1.5.1 Bragg’s Law

A very simple approach that derives Bragg’s law, can be given by geometrical
consideration of the problem. As seen in Figure 1.10 the incident beam hits
the sample with an angle θ between the beam and a certain lattice plane.
The beam is diffracted by the planes whereby the lower part has a longer
optically path. To get constructive interference the additional way s has to be
an integer multiple of λ. The way can be easily calculated with geometrical
considerations to be s = 2d sin θ. Since this has to equal the wavelength or
an integer multiple of it the result is:

nλ = 2dhkl sin(
2θ

2
) (1.6)

This equation is the so called Bragg’s law and it is the first condition of
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diffraction. The term 2θ/2 instead of θ is chosen because 2θ is the important
diffraction angle. The incident angle θ can be changed without variation of
Bragg’s law (see section 1.6.4). The second condition is the parallelism

condition which says that the scattering vector ~S has to be parallel to the
plane normal vector or perpendicular to the plane. In other words the inci-
dent angle θ has to equal the outgoing angle. It is to say that the angles are
measured between the beams and the net planes and not between the beams
and the surface! The complete derivation of these two conditions is based on
the Laue conditions that say that the scattering vector has to equal the
plane normal vector [1, p.16-20].

1.6 Experimental

1.6.1 X-Ray Methods

Two different X-ray diffractometers will be used within this lab course. A
Siemens D501 Kristalloflex powder diffractometer (coupled θ/2θ) (Figure
1.11) and a four-circle-texture-goniometer Philips X’PERT, equipped with an
ATC3 cradle (Figure 1.14(b)). The Siemens system works with a copper tube
while the Philips goniometer is used with a chromium tube. The wavelengths
of these tubes are listed in Table 1.2.
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Figure 1.10: The incident beam ~k0 is diffracted on the lattice plane dhkl. The
diffracted beam is ~k. The scattering vector ~S is defined by equation 1.5. To
get positive interference Bragg’s law (equ. 1.6) has to be fulfilled.

Table 1.2: The systems, the radiation sources, the according wavelengths
and their percentage after the monochromator.

system radiation wavelength / Å percentage / %
Siemens CuKα 1.54 > 99.9

CuKβ 1.39 < 0.1
Philips CrKα 2.29 > 99.9

CrKβ 2.08 < 0.1

1.6.2 The X-ray Powder Diffractometer

The X-ray powder diffractometer (coupled θ/2θ) shown in Figure 1.11 is the
most common application for X-ray diffraction. The image shows a Siemens
D501 Kristalloflex powder diffractometer which is used during this lab. The
X-ray beam leaves the X-ray tube through the slits one and two and hits
the sample in the center of the goniometer. The angle between the incident
beam and the surface of the sample is θ. The detector is on the right hand
side with a monochromator in front which has an angle of 2θ with respect to
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Figure 1.11: A Siemens D501 Kristalloflex powder diffractometer (coupled
θ/2θ): The beam is generated in the X-ray tube (I) which is mounted at the
left side. The sample (II) is rotating in the center with an angular speed of
ω. The beam is diffracted and passes the monochromator (III) in front of the
detector (IV). The monochromator and the detector have the angular speed
2ω.

the incident beam. The diffracted beam passes the slits three and four before
being detected. When measuring the diffracted beams the detector is turned
with the double angular velocity as the sample, so that the angle between
the incoming beam and the surface equals the angle between the diffracted
beam and the surface. This arrangement is called Bragg Brentano Focusing.

1.6.3 X-Ray Θ/2Θ Measurements

As mentioned in section 1.5.1 Bragg’s law has to be fulfilled to get construc-
tive interference which results in detectable diffracted intensity. Addition-
ally this equation only holds if the incident beam and the diffracted beam
are symmetric with respect to the measured planes. In case of randomly
oriented crystalline powder there are always planes with this symmetric ori-
entation present. Since the used X-ray wavelength is defined by the X-ray
tube and additionally selected with a monochromator there are only two of
the three variables in Bragg’s law (equ. 1.6) tunable and dependent on each
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other: the net plane distance dhkl and the scattering angle 2θ. Experimen-
tally changeable is only the angle 2θ. When rotating the detector with the
doubled angular speed as the specimen you will detect intensities at certain
positions (2θ) which are assigned to certain net plane distances dhkl and thus
to certain net planes (hkl). This measurement is called θ/2θ-measurement
and an example is shown in Figure 1.12. In these θ/2θ-scans all detected
planes are parallel to each other, but the net plane distances are different.
The intensities of the peaks depend on several intensity factors such as the
structure factor or instrumental influences. In general there are only few
reflections that have detectable intensities.
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Figure 1.12: Two powder patterns calculated with the program Powder Cell
of para-sexiphenyl (blue) and KCl (red). All peaks measured at a certain
angle 2θ correspond to a certain net plane distance dhkl and can thus be
assigned to a certain net plane (hkl).

In case of a single crystal the second condition will be fulfilled only for
net planes which are parallel to the surface. Making a θ/2θ measurement on
a single crystal will thus detect nothing but the plane which is parallel to the
surface.
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1.6.4 X-Ray Rocking Curve Measurements

substrate

n-2˚ n4˚ n-5˚ n-3˚
n1˚

S

nideal

Figure 1.13: A Rocking Curve is a measurement to determine the quality of
the alignment of crystallites (mocaicity).

When performing a Rocking Curve the detector is fixed, and thus the
diffraction angle 2θ is constant. Regarding Bragg’s law only one certain net
plane distance is chosen by fixing the diffraction angle. A Rocking Curve is
usually performed at a found peak of a θ/2θ-scan to check the spatial dis-
tribution of the crystallites. This is realized by tilting the sample, in other
words the incident angle. Therefore a Rocking Curve probes the parallelism
condition (~S‖~n). As shown in Figure 1.13 a Rocking Curve probes the qual-
ity of the alignment of the crystallites. If they are distributed completely
randomly (powder) a Rocking Curve won’t lead to a peak but rather yield
an almost constant intensity. The better the crystallites are aligned the bet-
ter the Rocking Curve will be. The best Rocking Curves are obtained when
investigating a single crystal since there is only one crystal.

1.6.5 X-Ray Pole Figure Technique

The X-Ray Pole Figure Technique is one of the most powerful measurements
for determining the entirety of crystal orientations and their alignment rela-
tive to each other. The principle of making a pole figure is shown in Figure
1.14. The measurement is done at a certain 2θ angle so that Bragg’s law is
always fulfilled for a chosen net plane. During the measurement the sample
is rotated and tilted to probe all possible ϕ and ψ angles in the upper hemi-
sphere of the sample. This is done by a rotation of the sample from ϕ = 0◦

to 360◦ followed by a certain tilt of ∆ψ and another rotation. Tilting the
sample from ψ = 0◦ to 90◦ with a ϕ rotation for each step, the whole upper
hemisphere is probed which leads to a stereographic projection as shown in
Figure 1.8. The big difference to the stereographic projection is that a pole
figure is performed at a fixed diffraction angle 2θ and thus only net planes
with the same net plane distance dhkl are detected. A peak in a pole figure
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Figure 1.14: The principle of X-Ray Pole Figure Technique: the measurement
is done at a fixed 2θ angle so that Bragg’s law is always fulfilled. The sample
is rotated around ϕ and ψ so that every net plane’s normal vector ~n is
once parallel to the scattering vector ~S. The intensities are mapped by
stereographic projection according to their tuple (ϕ, ψ). The measurement
are done at a Philips X’Pert four-circle-texture-goniometer (b).
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is called enhanced pole density (EPD) and corresponds to a certain pole and
therewith to a certain net plane. Poles with a different net plane distance can
be measured within another pole figure using a different 2θ angle according
to the selected net plane.

1.6.6 Silicon

Silicon (Si) crystals of high purity can be manifactured and thus the crystal
structure is well defined and close to a perfect crystal structure. For this
reason Si is often used to align X-ray diffractometers. In this lab course the
Standard Reference Material 640c – Silicon Powder NIST and a silicon single
crystal will be used1. The silicon crystal has a cubic crystal structure with
lattice constants of:

a = 0.54311946nm± 0.00000092nm (1.7)

The diffraction angles for CuKα and CrKα radiation for various net plane
distances are listed in Table 1.3 using Braggs’s law (equ. 1.6). The spatial
angles of net planes relative to each other are denoted for the most important
planes for a cubic system in Table 1.4.

1If other materials will be used the necessary documents will be delivered during the
exercise

21



Table 1.3: Net plane distances and according diffraction angles for Silicon
diffractions of CuKα (λ = 1.5406Å) and CrKα (λ = 2.28975Å) radiation.
Since this is a cubic system the values are equivalent for (±h± k ± l).

h k l dhkl 2θCu 2θCr

1 1 1 3.14 28.44 42.83
2 2 0 1.92 47.30 73.20
3 1 1 1.64 56.12 88.71
4 0 0 1.36 69.13 114.96
3 3 1 1.25 76.37 133.51
4 2 2 1.11 88.02
5 1 1 1.05 94.95
4 4 0 0.96 106.70
5 3 1 0.92 114.08
6 2 0 0.86 127.53
5 3 3 0.83 136.88

Table 1.4: Angle between net planes relative to each other in real space (ψ)
for a cubic crystal.

plane 1 {hkl} plane 2 {hkl} ψ/◦

{100} {100} 90
{100} {110} 45
{100} {111} 54.7
{100} {311} 25.2; 72.5
{111} {100} 54.7
{111} {110} 35.3; 90
{111} {111} 70.5
{111} {311} 29.5; 58.5; 80
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Chapter 2

The Exercise

Date

The samples and problems will be discussed during the exercise.

2.1 Samples to investigate

• Sample 1 : . . .

• Sample 2 : . . .

• Sample 3 : . . .
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2.2 The Problem

1. Mount the sample and set the correct settings.

2. Perform a rough θ/2θ-scan . . .

3. . . .
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