Home | People | Research | Courses | Publications | Address | News
Jobs | Master projects | Bachelor projects | Safety

Institute of Solid State Physics

      > > Deutsch     

Doping Molecular Wires      >> more >>

The ultimate miniaturization of electronics would be to use single molecules as electronic components. In a recent Nanoletters article, a team from M.I.T., Humbolt University, Montan University, Georgia Tech, and the TU Graz, explain why exchanging a single carbon atom with a nitrogen atom in certain molecules increases the electrical conductivity of the molecules by more than two orders of magnitude. The results provide clear guidelines for the rational design of single-molecule metals and highly doped single-molecule semiconducting devices. This is important for the development of bio-compatible interfaces between inorganic and organic matter. The image visualizes the transport channel in one of the studied molecules, a boron doped dithiol derivative of pyrene where the thiol groups are separated from the π-conjugated core by a methylene (i.e., -CH2-) spacer.

Doping Molecular Wires, Georg Heimel, Egbert Zojer, Lorenz Romaner, Jean-Luc Bredas, and Francesco Stellacci, Nanoletters (2009) doi:10.1021/nl9006613

Die Kleine Zeitung
APA Zukunftwissen
www.uni-protokolle.de
www.pressrelations.de
Die Presse