60.4 Rollable Displays: A Technology Development Enabling Breakthrough Mobile Devices

Edzer Huitema
CTO Polymer Vision
www.PolymerVision.com

SID Display Week 2008 Symposium
Los Angeles, May 23
About Polymer Vision

- 201X **Ubiquitous** rollable displays
- 2008 **Commercial product**: Readius®
- 2007 **Production line** and product
- 2006 **Spin-out** of Polymer Vision
- 2005 **Concept device** development
- 2000 **Development** of rollable display
- 1991 **Research** on organic electronics
Why displays on flexible carriers

<table>
<thead>
<tr>
<th>Proposition</th>
<th>Target market</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rollable</td>
<td>Mobile phones, E-readers, UMPCs, ...</td>
</tr>
<tr>
<td>Flexible</td>
<td>Smartcards, advertisement, point of sale, wearable, ...</td>
</tr>
<tr>
<td>Robust and lightweight</td>
<td>E-readers, point of sale, advertisement, ...</td>
</tr>
</tbody>
</table>
The need for rollable displays

Device size no longer coupled to display size

Display larger than the device itself.
Matrix displays on flexible carriers
No products out yet

Some of the demo’s of last years...
Main technology choices

<table>
<thead>
<tr>
<th>Technology block</th>
<th>Technologies currently under development</th>
</tr>
</thead>
<tbody>
<tr>
<td>Substrate</td>
<td>Plastic, Steel</td>
</tr>
<tr>
<td>Substrate handling</td>
<td>Bond-debond, Free standing, Transfer</td>
</tr>
<tr>
<td>Matrix stack</td>
<td>Organic, A-Si, Poly-Si, Passive</td>
</tr>
<tr>
<td>Patterning methods</td>
<td>Lithography, Printing, Other</td>
</tr>
<tr>
<td>Frontplane</td>
<td>Electrophoretic, C-LC, OLED, LCD, Liquid Powder</td>
</tr>
</tbody>
</table>
Polymer Vision’s process flow

1. Laminate foil on carrier

2. 6-mask AM process

3. Laminate front plane

4. Delaminate display from carrier
Rollable display cross section
Organic electronics performance

Source: Hagen Klauk, Max Planck Institute for Solid State Research
Solution processed Pentacene

Spin-coating → Lithography → Conversion

- ID (A)

- Mobility vs VG

- Gate voltage (V)

- Conversion

- R&D performance
- Base line gen 1 performance
Polymer Vision’s rollable display

- Truly Rollable
- Paper-like
- Viewable in bright sunlight
- Low power
- Enables large displays in highly mobile devices.
- Cost competitive
- Compatible with AMLCD equipment

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Display type</td>
<td>AM Electrophoretic</td>
</tr>
<tr>
<td>Bending radius</td>
<td>7.5mm</td>
</tr>
<tr>
<td>Display thickness</td>
<td>100um</td>
</tr>
<tr>
<td>Module weight</td>
<td>5.5 grams</td>
</tr>
<tr>
<td>Display size</td>
<td>4.7 inch</td>
</tr>
<tr>
<td>Pixel count</td>
<td>76800 (QVGA)</td>
</tr>
<tr>
<td>Grey levels</td>
<td>16</td>
</tr>
<tr>
<td>Reflectance</td>
<td>40%</td>
</tr>
<tr>
<td>Viewing angle</td>
<td>Paper like</td>
</tr>
<tr>
<td>Aperture</td>
<td>97%</td>
</tr>
<tr>
<td>Driving method</td>
<td>Pulse width @ 50Hz</td>
</tr>
<tr>
<td>Update speed</td>
<td>0.6s (bi-stable)</td>
</tr>
</tbody>
</table>
Introducing READIUS

eReading comfort in a mobile phone

Small:
Pocket sized and Lightweight

Large:
5” display

Bright:
Sunlight readable

Intuitive:
Simple to use

Fast:
3.5G high speed worldwide connectivity

Usable:
30 hours of continuous reading between charges
End-to-end content solution

Content updates
Anytime, Anywhere

Readius® content selection
Configuration; personalization

…..Your personal content. Always available. When and where you need it.
Innovations projected within the coming 5 years

2008 Launch of commercial product: Readius

- Higher resolution
- Smaller roll radius
- Color
- Larger size
- Touch screen
- Increased update speed

201X Ubiquitous rollable displays
Highest resolution e-paper prototype

- The World’s highest resolution: 254ppi!
- The world’s smallest roll radius: 6mm!
- Feature size: 5 micron
- Display thickness: 100 micron
- 40% overall white state
Highest resolution e-paper prototype

Paper print resolutions are achievable!
First ever rollable color e-paper prototype

- The world’s highest resolution: 127 ppi!
- The world’s smallest roll radius: 6mm!
- Integrated color filter (CF): 65k colors
- Display thickness: 100 micron
- CF close to reflecting layer
- 25% overall white state
Summary

- Rollable displays:
 - The breakthrough for mobile devices

- Readius:
 - First rollable display enabled e-reading device
 - Available this year

- New innovations:
 - The World’s highest resolution prototype display
 - The World’s first rollable color prototype displays
 - Smallest roll radius ever achieved

Rollable displays will become mainstream in the coming 5 years
Thank you for your attention
Higher update speed prototype platform

Fast updates enable interactivity