All (2002-Present)  SS21  WS21  SS22  WS22  SS23  WS23  SS24

 Karl Franzens University Graz

Graz University of Technology 

Frustrated Magnets and Quantum Spin Liquids
Prof. Steve R. White
University of California at Irvine, USA
17:15 - 18:15 Tuesday 08 May 2012 TUG P2

A quantum spin liquid is a solid whose atoms have magnetic moments but, because of quantum fluctuations, these moments fluctuate like a liquid even at zero temperature. Two dimensional spin liquids have been suggested as a way to produce high temperature superconductivity, and to build quantum computers. Just as helium is the only element which is a liquid at zero temperature, 2D spin liquids have been extremely difficult to find, despite decades of effort, raising the question, do realistic spin liquids even exist?
Recently, apparent spin liquids have been found experimentally, stimulating theoretical work to find simple model Hamiltonians of frustrated spin systems that have spin liquid ground states.

In this talk, I will give a broad overview of spin liquids and then focus on our simulations of the kagome Heisenberg model, a simple, realistic model of some of the recent experimental spin liquids, where we find a spin liquid ground state.