Soft X-ray Characterisation of Organic Semiconductor Films

Chris McNeill

Cavendish Laboratory
Overview

• Organic semiconductors
• Basic semiconductor physics
• Field-effect transistors
 – NEXAFS spectroscopy
 – Case study: P3AT transistors
• Solar cells
 – Scanning Transmission X-ray Microscopy
 – Case study: MDMO-PPV:PCBM
 – Soft X-ray reflectivity
• Conclusions
Organic semiconductors
Reel-to-reel processing

Substrate → ITO → PEDOT → Active layer → Cathode → Encapsulation → Completed modules
Basic semiconductor physics
Basic semiconductor physics
Influence of disorder

- Disorder (e.g., conformational, chemical, structural) further complicates transport.
Influence of disorder

- Transport is thermally activated, with a field dependent mobility

\[\mu(T, E) = \mu_0 \exp \left[-\frac{2}{3} \left(\frac{\sigma}{kT} \right)^2 \right] \exp \left\{ C \left[\left(\frac{\sigma}{kT} \right)^2 - \Sigma^2 \right] E^{1/2} \right\} \]

Organic Field-Effect Transistors

- Au
- SiO₂
- Highly doped Si
Organic Field-Effect Transistors

(a) $V_d \ll V_g - V_{Th}$

(b) $V_{d,sat} = V_g - V_{Th}$

(c) $V_d > V_{d,sat}$

$V(x) = V_g - V_{Th}$ pinch-off point
Organic Field-Effect Transistors

\[\mu_{sat} = \frac{\partial I_{d,sat}}{\partial V_g} \cdot \frac{L}{W C_i} \cdot \frac{1}{V_g - V_{Th}} \]

\[\mu_{lin} = \frac{\partial I_d}{\partial V_g} \cdot \frac{L}{W C_i V_d} \]
Case Study: Poly(3-alkylthiophene)

Case Study: P3AT – influence of side chain

\[
\begin{align*}
* & \quad [\ \ \] \quad * \\
\text{TTF} \quad & \quad \text{C}_n\text{AH}_{2A+1} \\
P3AT
\end{align*}
\]

Key questions:

- What is the influence of the dielectric on interfacial order?
- What is the influence of the dielectric on interfacial charge transport?
- What is the origin of the alkyl side-chain length dependence of mobility?
NEXAFS Spectroscopy

Ionisation Threshold

LUMO

HOMO

Core state

Energy (eV)

X-ray Optical Density

σ*

π*
NEXAFS Spectroscopy
NEXAFS Spectroscopy
Further analysis

\[I \sim 1 + (3 \cos^2 \theta - 1)(3 \cos^2 \langle \alpha \rangle - 1) \]

![Graph showing the relationship between incidence angle (\(\theta \)) and relative absorption intensity.](image)

- Incidence angle \(\theta \)
 - 90°
 - 55° (~Magic Angle)
 - 20°
 - 0°

Average Thiophene tilt angle \(\langle \alpha \rangle \) in ° (vs substrate)

DFT calculations: optimal tilt angle for \(\pi \)-stacked thiophenes is 67°

(Unpublished results removed)
Summary of Part I

• Have observed high field-effect mobilities in P3ATs using SiO$_2$ as the gate dielectric independent of alkyl chain length.

• Low mobilities previously observed with SiO$_2$ result not from the interfacial properties of the SiO$_2$ / P3AT junction, but rather from the disordered packing of P3AT when processed on SiO$_2$.

• Similarly, alkyl side-chain length only affects mobility in that it can affect the way P3AT orders at the substrate / film interface, and is not a general property of P3ATs.
Polymer solar cells
Basic photophysics

- Primary photoexcitations are strongly bound Frenkel-like excitons
- Localised by the strong electron-phonon interaction and low intermolecular coupling.
- Binding energies of 0.4 eV

Exciton dissociation and device types

Polymer:polymer

Polymer:fullerene

Polymer:nanocrystal

Table I. Confirmed terrestrial cell and submodule efficiencies measured under the global AM1.5 spectrum (1000 W/m²) at 25°C

<table>
<thead>
<tr>
<th>Classification</th>
<th>Effic. (%)</th>
<th>Area (cm²)</th>
<th>Voc (V)</th>
<th>Jsc (mA/cm²)</th>
<th>FF (%)</th>
<th>Test centre (and date)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silicon</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Si (crystalline)</td>
<td>24.7 ± 0.5</td>
<td>4.00 (da)</td>
<td>0.706</td>
<td>42.2</td>
<td>82.8</td>
<td>UNSW PERL13</td>
<td></td>
</tr>
<tr>
<td>Si (multicrystalline)</td>
<td>20.3 ± 0.5</td>
<td>1.002 (ap)</td>
<td>0.664</td>
<td>37.7</td>
<td>80.9</td>
<td>fhG-ISE14</td>
<td></td>
</tr>
<tr>
<td>Si (thin film transfer)</td>
<td>16.6 ± 0.4</td>
<td>4.017 (ap)</td>
<td>0.645</td>
<td>32.8</td>
<td>78.2</td>
<td>fhG-ISE (7/01)</td>
<td></td>
</tr>
<tr>
<td>Si (thin film submodule)</td>
<td>10.4 ± 0.3</td>
<td>940 (ap)</td>
<td>0.492</td>
<td>29.5</td>
<td>72.1</td>
<td>fhG-ISE (8/07)</td>
<td>CSG Solar (1–2 μm on glass; 20 cells)9</td>
</tr>
<tr>
<td>III–V Cells</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GaAs (crystalline)</td>
<td>25.1 ± 0.8</td>
<td>3.91 (t)</td>
<td>1.022</td>
<td>28.2</td>
<td>87.1</td>
<td>NREL (3/90)</td>
<td>Kopin, AlGaAs window16</td>
</tr>
<tr>
<td>GaAs (thin film)</td>
<td>24.5 ± 0.5</td>
<td>1.002 (t)</td>
<td>1.029</td>
<td>28.8</td>
<td>82.5</td>
<td>fhG-ISE (5/05)</td>
<td>Radboud U., NL17</td>
</tr>
<tr>
<td>GaAs (multicrystalline)</td>
<td>18.2 ± 0.5</td>
<td>4.011 (t)</td>
<td>0.994</td>
<td>23.0</td>
<td>79.7</td>
<td>NREL (11/95)</td>
<td>RTI, Ge substrate18</td>
</tr>
<tr>
<td>InP (crystalline)</td>
<td>21.9 ± 0.7</td>
<td>4.02 (t)</td>
<td>0.878</td>
<td>29.3</td>
<td>85.4</td>
<td>NREL (4/90)</td>
<td>Spire, epitaxial19</td>
</tr>
<tr>
<td>Thin Film Chalcogenide</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CIGS (cell)</td>
<td>18.8 ± 0.6</td>
<td>1.00 (ap)</td>
<td>0.703</td>
<td>34.0</td>
<td>78.7</td>
<td>fhG-ISE (8/06)</td>
<td>NREL, CIGS on glass20</td>
</tr>
<tr>
<td>CIGS (submodule)</td>
<td>16.6 ± 0.4</td>
<td>1.60 (ap)</td>
<td>0.661</td>
<td>33.4</td>
<td>75.1</td>
<td>fhG-ISE (3/00)</td>
<td>U. Uppsala, 4 serial cell21</td>
</tr>
<tr>
<td>CdTe (cell)</td>
<td>16.5 ± 0.5</td>
<td>1.032 (ap)</td>
<td>0.845</td>
<td>25.9</td>
<td>75.5</td>
<td>NREL (9/01)</td>
<td>NREL, mesa on glass22</td>
</tr>
<tr>
<td>Amorphous/Nanocrystalline Si</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Si (amorphous)</td>
<td>9.5 ± 0.3</td>
<td>1.070 (ap)</td>
<td>0.859</td>
<td>17.5</td>
<td>63.0</td>
<td>NREL (4/03)</td>
<td>U. Neuchatel21</td>
</tr>
<tr>
<td>Si (nanocrystalline)</td>
<td>10.1 ± 0.2</td>
<td>1.199 (ap)</td>
<td>0.539</td>
<td>24.4</td>
<td>76.6</td>
<td>JQA (12/97)</td>
<td>Kaneka (2 μm on glass)24</td>
</tr>
<tr>
<td>Photochemical</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dye sensitised</td>
<td>10.4 ± 0.3</td>
<td>1.004 (ap)</td>
<td>0.729</td>
<td>21.8</td>
<td>65.2</td>
<td>AIST (8/05)</td>
<td>Sharp25</td>
</tr>
<tr>
<td>Dye sensitised (submodule)</td>
<td>7.9 ± 0.3</td>
<td>26.48 (ap)</td>
<td>6.27</td>
<td>2.01</td>
<td>62.4</td>
<td>AIST (6/07)</td>
<td>Sharp6</td>
</tr>
<tr>
<td>Organic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Organic polymer</td>
<td>5.15 ± 0.3</td>
<td>1.021 (ap)</td>
<td>0.876</td>
<td>9.40</td>
<td>62.5</td>
<td>NREL (12/06)</td>
<td>Konarka7</td>
</tr>
<tr>
<td>Multijunction Devices</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GaInP/GaAs/Ge</td>
<td>32.0 ± 1.5</td>
<td>3.989 (t)</td>
<td>2.622</td>
<td>14.37</td>
<td>85.0</td>
<td>NREL (1/03)</td>
<td>Spectrolab (monolithic)</td>
</tr>
<tr>
<td>GaInP/GaAs</td>
<td>30.3</td>
<td>4.0 (t)</td>
<td>2.488</td>
<td>14.22</td>
<td>85.6</td>
<td>JQA (4/96)</td>
<td>Japan energy (monolithic)26</td>
</tr>
<tr>
<td>GaAs/CIS (thin film)</td>
<td>25.8 ± 1.3</td>
<td>4.00 (t)</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>NREL (11/89)</td>
<td>Kopfmu/Boeing (4 terminal)27</td>
</tr>
<tr>
<td>a-Si/μc-Si (thin submodule)</td>
<td>11.7 ± 0.4</td>
<td>14.23 (ap)</td>
<td>5.462</td>
<td>2.99</td>
<td>71.3</td>
<td>AIST (9/04)</td>
<td>Kaneka (thin film)28</td>
</tr>
</tbody>
</table>
Device physics basics

$$k_{\text{diss}}(x, T, F) = \frac{3R}{4\pi a^3} e^{-E_B/k_BT} J_1(2\sqrt{-2b})/\sqrt{-2b}$$

$$= \frac{3R}{4\pi a^3} e^{-E_B/k_BT} (1 + b + b^2/3 + \cdots)$$

$$b = q^3 F / (8\pi\varepsilon k_BT^2)$$
Charge separation

Additional voltage dependence in photocurrent curves: Field dependent dissociation rate of interfacial electron-hole pairs

Charge separation

\[J_{\text{ph}} \text{ [A/m}^2] \]

\[V_0 - V \text{ [V]} \]

Length scales in organic semiconductors

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exciton diffusion length</td>
<td>5 – 15 nm</td>
</tr>
<tr>
<td>Optical absorption length</td>
<td>200 nm</td>
</tr>
<tr>
<td>Thermal capture radius</td>
<td>20 – 30 nm</td>
</tr>
<tr>
<td>Transport length</td>
<td>3 – 50 μm</td>
</tr>
</tbody>
</table>
Bulk heterojunction architecture

NEXAFS for chemical differentiation

MDMO-PPV

PCBM
Scanning Transmission X-ray Microscopy

Order sorting aperture

Monochromatic X-rays

SEM of 15 nm spot size zone plate

Scintillator and PMT

Piezo stage scanned sample

Zone plate

STXM of 1:4 MDMO-PPV:PCBM blend from toluene

Comparison of STXM, TEM and AFM

Composition profiles

Composition profiles

- MDMO-PPV % composition
- PCBM % composition

Film thickness

Distance (μm)

Weight %

Film thickness (nm)

Photocurrent mapping

Photocurrent mapping

Photocurrent mapping

Photocurrent mapping

STXM – Pushing the limits of resolution

STXM – Pushing the limits of resolution

Soft X-ray Scattering

Complex index of refraction: \(n = 1 - \delta - i\beta \)
where \(\delta \) and \(\beta \) are the dispersion and absorption properties

\[I(E) \propto F^2(E) \propto E^4|\delta(E) + i\beta(E)|^2, \text{ Material contrast } \propto \Delta\delta^2 + \Delta\beta^2 \]

Soft X-ray scattering

RSoXS measurements done at the ALS, Beamline 6.3.2 in transmission geometry.
Detector scan was taken at 284.7 eV

Soft X-ray scattering

Conclusions

• Scanning transmission X-ray microscopy is a powerful method for quantitatively mapping the chemical composition of conjugated polymer blends with sub-100 nm resolution.

• Composition of phase separated PPV:PCBM blends has been studied and compared with near-field photocurrent images.

• Resonant soft X-ray scattering is able to probe the sub 10-nm structural properties of thin polymer blend films in transmission geometry due to the resonant scattering of soft X-rays due to the optical properties of the materials.

• Soft X-ray scattering is a promising new method for providing new insight into the nanostructure of organic photovoltaic composites.
Acknowledgements

Wibren Oosterbaan, Jean Christophe Bolsée, Veerle Vrindts, Jean V. Manca

Lars Thomsen

Paul Dastoor

Ben Watts

Sufal Swaraj, C. Wang, Harald Ade