All (2002-Present)  SS21  WS21  SS22  WS22  SS23  WS23  SS24

 Karl Franzens University Graz

Graz University of Technology 

Understanding and Mitigating Electrolyte Degradation in High Voltage Li Ion Batteries
Prof. Prof. h.c. mult. Dr. Martin Winter
Westfälische Wilhelms-Universität MEET Batterieforschungszentrum
16:15 - 17:15 Tuesday 28 November 2023 TUG

Johannes Kasnatscheew, Sven Klein, Maximilian Kubot, Lukas Stolz, Sascha Nowak, and Martin Winter

MEET Battery Research Center, Institute of Physical Chemistry, University of Münster, Corrensstrasse 46, 48149 Münster, Germany and
Helmholtz-Institute Münster, IEK-12, Forschungszentrum Jülich GmbH, Corrensstrasse 46, 48149 Münster, Germany


Despite numerous attempts to find replacements with even higher energy density, lithium ion batteries (LIBs) still dominate the market of advanced high energy density batteries. In fact, there are numerous attempts to realize LIBs with higher output voltage and energy density. Unfortunately, high voltage LIBs are compromised by lower cycle life due to enhanced degradation of cathode material, e.g., LiNi0.6Co0.2Mn0.2O2 (NCM622) and electrolyte. Crucial is the initiated electrode crosstalk, i.e., transition metal (TM) dissolution from the cathode and subsequent deposition on the anode, as it forces formation of high surface area lithium (so-called dendrites), capacity loss and risk of Li dendrite short circuits, finally leading to an abrupt end-of-life (literature-known as sudden death/roll over failure).[1]
A pragmatic approach to prolong cycle life is the electrolyte manipulation towards formation/presence of fluorophosphates, as they effectively suppress electrode crosstalk via TM ion scavenging.[2, 3] The LiDFP-content sensitively depends on factors, such as storage temperature of electrolyte[4] or the type of separator[5].
Fluorophosphates easily decompose to highly toxic organofluorophosphates (OFPs), which are known from other contexts to be strong chemical weapons.[6] It is demonstrated that a dual-additive approach suppresses the OFP content without sacrificing LIB performance.[6]
This talk will cover a basic introduction into lithium ion batteries and will then address measures to tackle electrode crosstalk, [7, 8, 9], which is a major key for achieving long life high energy density LIBs.

References:
[1] S. Klein, P. Bärmann, T. Beuse, K. Borzutzki, J. E. Frerichs, J. Kasnatscheew, M. Winter, T. Placke ChemSusChem. 2021, 14, 595-613.
[2] S. Klein, S. van Wickeren, S. Röser, P. Bärmann, K. Borzutzki, B. Heidrich, M. Börner, M. Winter, T. Placke, J. Kasnatscheew Advanced Energy Materials. 2021, 11, 2003738.
[3] S. Klein, P. Harte, S. van Wickeren, K. Borzutzki, S. Roser, P. Barmann, S. Nowak, M. Winter, T. Placke, J. Kasnatscheew Cell Reports Physical Science. 2021, 2.
[4] S. Klein, P. Harte, J. Henschel, P. Barmann, K. Borzutzki, T. Beuse, S. van Wickeren, B. Heidrich, J. Kasnatscheew, S. Nowak, M. Winter, T. Placke Advanced Energy Materials. 2021, 11.
[5] S. Klein, J. M. Wrogemann, S. van Wickeren, P. Harte, P. Barmann, B. Heidrich, J. Hesper, K. Borzutzki, S. Nowak, M. Borner, M. Winter, J. Kasnatscheew, T. Placke Advanced Energy Materials. 2022, 12.
[6] M. Kubot, L. Frankenstein, E. Muschiol, S. Klein, M. Esselen, M. Winter, S. Nowak, J. Kasnatscheew ChemSusChem. 2023, 16, e202202189.
[7] S. Klein, P. Bärmann, O. Fromm, K. Borzutzki, J. Reiter, Q. Fan, M. Winter, T. Placke, J. Kasnatscheew J. Mater. Chem. A. 2021, 9, 7546-7555.
[8] S. Klein, L. Haneke, P. Harte, L. Stolz, S. van Wickeren, K. Borzutzki, S. Nowak, M. Winter, T. Placke, J. Kasnatscheew ChemElectroChem. 2022, 9, e202200469.
[9] S. Klein, P. Barmann, L. Stolz, K. Borzutzki, J. P. Schmiegel, M. Borner, M. Winter, T. Placke, J. Kasnatscheew ACS Applied Materials & Interfaces. 2021, 13, 57241-57251.